Keywords: Binomial coefficient; congruence; cyclotomic polynomial; Kummer’s theorem; Gaussian binomial coefficient; Pascal’s triangle; prime constellation; primality test
@article{COMIM_2009_17_1_a6,
author = {Ericksen, Larry},
title = {Prime constellations in triangles with binomial coefficient congruences},
journal = {Communications in Mathematics},
pages = {67--80},
year = {2009},
volume = {17},
number = {1},
mrnumber = {2582960},
zbl = {1244.11019},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a6/}
}
Ericksen, Larry. Prime constellations in triangles with binomial coefficient congruences. Communications in Mathematics, Tome 17 (2009) no. 1, pp. 67-80. http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a6/
[1] Bondarenko, B. A.: Generalized Pascal triangles and pyramids: Their fractals, graphs, and applications. pp. 22–23, 58. Santa Clara, CA: The Fibonacci Association, 1993 | Zbl
[2] Caldwell, C.: The Prime Pages. http://primes.utm.edu/notes/proofs/Wilsons.html
[3] Crandall, R., Pomerance, C.: Prime Numbers. A Computational Perspective. Springer-Verlag, New York, 2001 | MR
[4] Dickson, L. E.: A New Extension of Dirichlet’s Theorem on Prime Numbers. Messenger Math. 33, 1904, p. 155–161
[5] Dilcher, K., Stolarsky, K. B.: A Pascal-Type Triangle Characterizing Twin Primes. Amer. Math. Monthly 112, 2005, p. 673–681 | DOI | MR | Zbl
[6] Dirichlet, P. G. L.: Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält. Abhand. Ak. Wiss. Berlin 48, 1837
[7] Ericksen, L.: Divisibility, iterated digit sums, primality tests. Math. Slovaca 59(3), 2009, p. 261–274 | DOI | MR | Zbl
[8] Ericksen, L.: Iterated Digit Sums, Recursions and Primality. Acta Mathematica Universitatis Ostraviensis 14, 2006, p. 27–35 | MR | Zbl
[9] Ericksen, L.: Primality testing and prime constellations. Šiauliai Math. Semin. 3(11), 2008, p. 61–77 | MR | Zbl
[10] Harborth, H.: Über die teilbarkeit im Pascal-Dreieck. Math.-Phys Semesterber 22, 1975, p. 13–21 | MR | Zbl
[11] Harborth, H.: Ein primzahlkriterium nach Mann und Shanks. Arch. Math. 27(3), 1976, p. 290–294 | DOI | MR | Zbl
[12] Harborth, H.: Prime number criteria in Pascal’s triangle. J. London Math. Soc. (2) 16, 1977 p. 184–190 | MR | Zbl
[13] Hudson, R. H., Williams, K. S.: A divisibility property of binomial coefficients viewed as an elementary sieve. Internat. J. Math. & Math. Sci. 4(4), 1981, p. 731–743 | MR | Zbl
[14] Kummer, E. E.: Über die Erganzungssätze zu den allgemeinen Reciprocitätsgesetzen. J. Reine Angew. Math. 44, 1852, p. 93–146
[15] Mann, H. B., Shanks, D.: A necessary and sufficient condition for primality and its source. J. Combinatorial Theory (A) 13, 1972, p. 131–134 | MR | Zbl
[16] Pascal, B.: Traité du triangle arithmétique, avec quelques autres petits traités sur la mêmes matières. G. Desprez, Paris, 1654, Oeuvres completes de Blaise Pascal, T. 3, 1909, p. 433–593
[17] Robin, G.: Grandes valeurs de la fonction somme des diviseurs et hypothese de Riemann. J. Math. Pures Appl. 63, 1984, p. 187–213 | MR | Zbl
[18] Schinzel, A., Sierpinski, W.: Sur certaines hypothèses concernant les nombres premiers. Acta Arith. 4, 1958, p. 185–208, Erratum 5, 1959, p. 259 | MR | Zbl
[19] Weisstein, E.W.: Distinct Prime Factors. http://mathworld.wolfram.com/DistinctPrimeFactors.html
[20] Weisstein, E.W.: Prime Constellation. http://mathworld.wolfram.com/PrimeConstellation.html