Prime constellations in triangles with binomial coefficient congruences
Communications in Mathematics, Tome 17 (2009) no. 1, pp. 67-80
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The primality of numbers, or of a number constellation, will be determined from residue solutions in the simultaneous congruence equations for binomial coefficients found in Pascal’s triangle. A prime constellation is a set of integers containing all prime numbers. By analyzing these congruences, we can verify the primality of any number. We present different arrangements of binomial coefficient elements for Pascal’s triangle, such as by the row shift method of Mann and Shanks and especially by the diagonal representation of Ericksen. Primes of linear and polynomial forms are identified from congruences of their associated binomial coefficients. This method of primality testing is extended to triangle elements created from $q$-binomial or Gaussian coefficients, using congruences with cyclotomic polynomials as a modulus. We apply Kummer’s method of $p$-ary representation to binomial coefficient congruences to find prime constellations. Aside from their capacity to find prime numbers in binomial coefficient triangles, congruences are used to identify prime properties of composite numbers, represented as distinct prime factors or as prime pairs.
The primality of numbers, or of a number constellation, will be determined from residue solutions in the simultaneous congruence equations for binomial coefficients found in Pascal’s triangle. A prime constellation is a set of integers containing all prime numbers. By analyzing these congruences, we can verify the primality of any number. We present different arrangements of binomial coefficient elements for Pascal’s triangle, such as by the row shift method of Mann and Shanks and especially by the diagonal representation of Ericksen. Primes of linear and polynomial forms are identified from congruences of their associated binomial coefficients. This method of primality testing is extended to triangle elements created from $q$-binomial or Gaussian coefficients, using congruences with cyclotomic polynomials as a modulus. We apply Kummer’s method of $p$-ary representation to binomial coefficient congruences to find prime constellations. Aside from their capacity to find prime numbers in binomial coefficient triangles, congruences are used to identify prime properties of composite numbers, represented as distinct prime factors or as prime pairs.
Classification : 11A51, 11B65, 11N13, 11N32
Keywords: Binomial coefficient; congruence; cyclotomic polynomial; Kummer’s theorem; Gaussian binomial coefficient; Pascal’s triangle; prime constellation; primality test
@article{COMIM_2009_17_1_a6,
     author = {Ericksen, Larry},
     title = {Prime constellations in triangles with binomial coefficient congruences},
     journal = {Communications in Mathematics},
     pages = {67--80},
     year = {2009},
     volume = {17},
     number = {1},
     mrnumber = {2582960},
     zbl = {1244.11019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a6/}
}
TY  - JOUR
AU  - Ericksen, Larry
TI  - Prime constellations in triangles with binomial coefficient congruences
JO  - Communications in Mathematics
PY  - 2009
SP  - 67
EP  - 80
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a6/
LA  - en
ID  - COMIM_2009_17_1_a6
ER  - 
%0 Journal Article
%A Ericksen, Larry
%T Prime constellations in triangles with binomial coefficient congruences
%J Communications in Mathematics
%D 2009
%P 67-80
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a6/
%G en
%F COMIM_2009_17_1_a6
Ericksen, Larry. Prime constellations in triangles with binomial coefficient congruences. Communications in Mathematics, Tome 17 (2009) no. 1, pp. 67-80. http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a6/

[1] Bondarenko, B. A.: Generalized Pascal triangles and pyramids: Their fractals, graphs, and applications. pp. 22–23, 58. Santa Clara, CA: The Fibonacci Association, 1993 | Zbl

[2] Caldwell, C.: The Prime Pages. http://primes.utm.edu/notes/proofs/Wilsons.html

[3] Crandall, R., Pomerance, C.: Prime Numbers. A Computational Perspective. Springer-Verlag, New York, 2001 | MR

[4] Dickson, L. E.: A New Extension of Dirichlet’s Theorem on Prime Numbers. Messenger Math. 33, 1904, p. 155–161

[5] Dilcher, K., Stolarsky, K. B.: A Pascal-Type Triangle Characterizing Twin Primes. Amer. Math. Monthly 112, 2005, p. 673–681 | DOI | MR | Zbl

[6] Dirichlet, P. G. L.: Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält. Abhand. Ak. Wiss. Berlin 48, 1837

[7] Ericksen, L.: Divisibility, iterated digit sums, primality tests. Math. Slovaca 59(3), 2009, p. 261–274 | DOI | MR | Zbl

[8] Ericksen, L.: Iterated Digit Sums, Recursions and Primality. Acta Mathematica Universitatis Ostraviensis 14, 2006, p. 27–35 | MR | Zbl

[9] Ericksen, L.: Primality testing and prime constellations. Šiauliai Math. Semin. 3(11), 2008, p. 61–77 | MR | Zbl

[10] Harborth, H.: Über die teilbarkeit im Pascal-Dreieck. Math.-Phys Semesterber 22, 1975, p. 13–21 | MR | Zbl

[11] Harborth, H.: Ein primzahlkriterium nach Mann und Shanks. Arch. Math. 27(3), 1976, p. 290–294 | DOI | MR | Zbl

[12] Harborth, H.: Prime number criteria in Pascal’s triangle. J. London Math. Soc. (2) 16, 1977 p. 184–190 | MR | Zbl

[13] Hudson, R. H., Williams, K. S.: A divisibility property of binomial coefficients viewed as an elementary sieve. Internat. J. Math. & Math. Sci. 4(4), 1981, p. 731–743 | MR | Zbl

[14] Kummer, E. E.: Über die Erganzungssätze zu den allgemeinen Reciprocitätsgesetzen. J. Reine Angew. Math. 44, 1852, p. 93–146

[15] Mann, H. B., Shanks, D.: A necessary and sufficient condition for primality and its source. J. Combinatorial Theory (A) 13, 1972, p. 131–134 | MR | Zbl

[16] Pascal, B.: Traité du triangle arithmétique, avec quelques autres petits traités sur la mêmes matières. G. Desprez, Paris, 1654, Oeuvres completes de Blaise Pascal, T. 3, 1909, p. 433–593

[17] Robin, G.: Grandes valeurs de la fonction somme des diviseurs et hypothese de Riemann. J. Math. Pures Appl. 63, 1984, p. 187–213 | MR | Zbl

[18] Schinzel, A., Sierpinski, W.: Sur certaines hypothèses concernant les nombres premiers. Acta Arith. 4, 1958, p. 185–208, Erratum 5, 1959, p. 259 | MR | Zbl

[19] Weisstein, E.W.: Distinct Prime Factors. http://mathworld.wolfram.com/DistinctPrimeFactors.html

[20] Weisstein, E.W.: Prime Constellation. http://mathworld.wolfram.com/PrimeConstellation.html