$\partial$-closed sets in biclosure spaces
Communications in Mathematics, Tome 17 (2009) no. 1, pp. 51-66
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the present paper, we introduce and study the concept of $\partial $-closed sets in biclosure spaces and investigate its behavior. We also introduce and study the concept of $\partial $-continuous maps.
In the present paper, we introduce and study the concept of $\partial $-closed sets in biclosure spaces and investigate its behavior. We also introduce and study the concept of $\partial $-continuous maps.
Classification : 54A05, 54E55
Keywords: closure operator; closure space; biclosure space; $\partial$-closed set; $\partial$-continuous map
@article{COMIM_2009_17_1_a5,
     author = {Boonpok, Chawalit},
     title = {$\partial$-closed sets in biclosure spaces},
     journal = {Communications in Mathematics},
     pages = {51--66},
     year = {2009},
     volume = {17},
     number = {1},
     mrnumber = {2582959},
     zbl = {1237.54026},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a5/}
}
TY  - JOUR
AU  - Boonpok, Chawalit
TI  - $\partial$-closed sets in biclosure spaces
JO  - Communications in Mathematics
PY  - 2009
SP  - 51
EP  - 66
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a5/
LA  - en
ID  - COMIM_2009_17_1_a5
ER  - 
%0 Journal Article
%A Boonpok, Chawalit
%T $\partial$-closed sets in biclosure spaces
%J Communications in Mathematics
%D 2009
%P 51-66
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a5/
%G en
%F COMIM_2009_17_1_a5
Boonpok, Chawalit. $\partial$-closed sets in biclosure spaces. Communications in Mathematics, Tome 17 (2009) no. 1, pp. 51-66. http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a5/

[1] Čech, E.: Topological Spaces. Topological Papers of Eduard Čech, Academia, Prague (1968), 436–472

[2] Chvalina, J.: On homeomorphic topologies and equivalent set-systems. Arch. Math. 2, Scripta Fac. Sci. Nat. UJEP Brunensis, XII (1976), 107–116 | MR | Zbl

[3] Chvalina, J.: Stackbases in power sets of neighbourhood spaces preserving the continuity of mappings. Arch. Math. 2, Scripta Fac. Sci. Nat. UJEP Brunensis, XVII (1981), 81–86 | MR | Zbl

[4] Dujunji, J.: Topology. Allyn and Bacon, Boston, 1966 | MR

[5] Gupta, M. K., Singh, Rupen Pratap: On fuzzy pairwise s-continuous and fuzzy pairwise s-open mapping. Int. J. Pure & Appl. Math. Sci. 1 (2004), 101–109

[6] Kelly, K. C.: Bitopological spaces. Pro. London Math. Soc. 3(13) (1969), 71–79 | MR

[7] Noiri, T., Popa, V.: Some properties of weakly open functions in bitopological spaces. Novi Sad J. Math. 36 (1) (2006), 47–54 | MR | Zbl

[8] Sen, S. K., Mukherjee, M. N.: On extension of pairwise $\theta $-continuous maps. Internat. J. Math. Sci. 19 (1) (1966), 53–56 | MR

[9] Skula, L.: Systeme von stetigen abbildungen. Czech. Math. J., 17 (92) (1967), 45–52 | MR | Zbl

[10] Šlapal, J.: Closure operations for digital topology. Theoret. Comput. Sci., 305 (2003), 457–471 | DOI | MR | Zbl