Range of density measures
Communications in Mathematics, Tome 17 (2009) no. 1, pp. 33-50
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We investigate some properties of density measures – finitely additive measures on the set of natural numbers $\text{$\mathbb {N}$}$ extending asymptotic density. We introduce a class of density measures, which is defined using cluster points of the sequence $\bigl (\frac{A(n)}{n}\bigr )$ as well as cluster points of some other similar sequences. We obtain range of possible values of density measures for any subset of $\text{$\mathbb {N}$}$. Our description of this range simplifies the description of Bhashkara Rao and Bhashkara Rao [Bhaskara Rao, K. P. S., Bhaskara Rao, M., Theory of Charges – A Study of Finitely Additive Measures, Academic Press, London–New York, 1983.] for general finitely additive measures. Also the values which can be attained by the measures defined in the first part of the paper are studied.
We investigate some properties of density measures – finitely additive measures on the set of natural numbers $\text{$\mathbb {N}$}$ extending asymptotic density. We introduce a class of density measures, which is defined using cluster points of the sequence $\bigl (\frac{A(n)}{n}\bigr )$ as well as cluster points of some other similar sequences. We obtain range of possible values of density measures for any subset of $\text{$\mathbb {N}$}$. Our description of this range simplifies the description of Bhashkara Rao and Bhashkara Rao [Bhaskara Rao, K. P. S., Bhaskara Rao, M., Theory of Charges – A Study of Finitely Additive Measures, Academic Press, London–New York, 1983.] for general finitely additive measures. Also the values which can be attained by the measures defined in the first part of the paper are studied.
Classification : 11B05, 20B27, 28A12, 28D05
Keywords: asymptotic density; density measure; finitely additive measure
@article{COMIM_2009_17_1_a4,
     author = {Sleziak, Martin and Ziman, Milo\v{s}},
     title = {Range of density measures},
     journal = {Communications in Mathematics},
     pages = {33--50},
     year = {2009},
     volume = {17},
     number = {1},
     mrnumber = {2582958},
     zbl = {1253.11010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a4/}
}
TY  - JOUR
AU  - Sleziak, Martin
AU  - Ziman, Miloš
TI  - Range of density measures
JO  - Communications in Mathematics
PY  - 2009
SP  - 33
EP  - 50
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a4/
LA  - en
ID  - COMIM_2009_17_1_a4
ER  - 
%0 Journal Article
%A Sleziak, Martin
%A Ziman, Miloš
%T Range of density measures
%J Communications in Mathematics
%D 2009
%P 33-50
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a4/
%G en
%F COMIM_2009_17_1_a4
Sleziak, Martin; Ziman, Miloš. Range of density measures. Communications in Mathematics, Tome 17 (2009) no. 1, pp. 33-50. http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a4/

[1] Ašić, M. D., Adamović, D. D.: Limits points of sequences in metric spaces. Amer. Math. Monthly 77 (1970) 613–616 | DOI | MR

[2] Balcar, B., Štěpánek, P.: Teorie množin. Academia, Praha, 1986 (in Czech) | MR

[3] Banach, S.: Theory of Linear Operations. North Holland, Amsterdam, 1987 | MR | Zbl

[4] Bhaskara Rao, K. P. S., Bhaskara Rao, M.: Theory of Charges – A Study of Finitely Additive Measures. Academic Press, London–New York, 1983 | MR | Zbl

[5] Blass, A., Frankiewicz, R., Plebanek, G., Ryll-Nardzewski, C.: A note on extensions of asymptotic density. Proc. Amer. Math. Soc. 129 (11) (2001) 3313–3320 | DOI | MR | Zbl

[6] Blümlinger, M.: Lévy group action and invariant measures on $\beta \mathbb {N}$. Trans. Amer. Math. Soc. 348 (12) (1996) 5087–5111 | DOI | MR

[7] Buck, R. C.: The measure theoretic approach to density. Amer. J. Math. 68 (1946) 560–580 | DOI | MR | Zbl

[8] Campbell, D. E., Kelly, J. S.: Asymptotic density and social choice trade-offs. Math. Social Sci. 29 (1995) 181–194 | DOI | MR | Zbl

[9] Fey, M.: May’s theorem with an infinite population. Social Choice and Welfare 23 (2004) 275–293 | MR | Zbl

[10] Fey, M.: Problems (Density measures). Tatra Mnt. Math. Publ. 31 (2005) 177–181 | MR

[11] Fuchs, A., Giuliano Antonini, R.: Théorie générale des densités. Rend. Acc. Naz. delle Scienze detta dei XL, Mem. di Mat. 108 (1990) Vol. XI, fasc. 14, 253–294 | MR | Zbl

[12] Gillman, L., Jerison, M.: Rings of Continuous Functions. Van Nostrand, Princeton, 1960 | MR | Zbl

[13] Giuliano Antonini, R., Grekos, G., Mišík, L.: On weighted densities. Czechosl. Math. J. 57 (3) (2007) 947–962 | DOI | MR | Zbl

[14] Grekos, G.: On various definitions of density. (survey), Tatra Mt. Math. Publ. 31 (2005) 17–27 | MR | Zbl

[15] Grekos, G., Šalát, T., Tomanová, J.: Gaps and densities. Bull. Math. Soc. Sci. Math. Roum. 46 (3–4) (2003–2004) 121–141 | MR

[16] Grekos, G., Volkmann, B.: On densities and gaps. J. Number Theory 26 (1987) 129–148 | MR | Zbl

[17] Halberstam, H., Roth, K. F.: Sequences. Springer-Verlag, New York, 1983 | MR | Zbl

[18] Howard, P., Rubin, J. E.: Consequences of the axiom of choice. Mathematical Surveys and Monographs. 59. Providence, RI: American Mathematical Society (AMS), 1998 | MR | Zbl

[19] Hrbacek, K., Jech, T.: Introduction to set theory. Marcel Dekker, New York, 1999 | MR | Zbl

[20] Johnson, B. E.: Separate continuity and measurability. Proc. Amer. Math. Soc. 20 (2) (1969) 420–422 | DOI | MR | Zbl

[21] Lauwers, L.: Intertemporal objective functions: strong Pareto versus anonymity. Mathematical Social Sciences 35 (1998) 37–55 | DOI | MR | Zbl

[22] Maharam, D.: Finitely additive measures on the integers. Sankhya, Ser. A 38 (1976) 44–59 | MR | Zbl

[23] Pincus, D., Solovay, R. M.: Definability of measures and ultrafilters. The Journal of Symbolic Logic 42 (2) (1977) 179–190 | DOI | MR | Zbl

[24] Pólya, G.: Untersuchungen über Lücken und Singularitäten von Potenzreihen. Math. Zeit. 29 (1929) 549–640 | DOI

[25] Rajagopal, C. T.: Some limit theorems. Amer. J. Math. 70 (1) (1948) 157–166 | DOI | MR | Zbl

[26] Šalát, T., Tijdeman, R.: Asymptotic densities of sets of positive integers. Mathematica Slovaca 33 (1983) 199–207 | MR

[27] Sleziak, M., Ziman, M.: Lévy group and density measures. J. Number Theory, 128 (12) (2008) 3005–3012 | MR | Zbl

[28] Tenenbaum, G.: Introduction to analytic and probabilistic number theory. Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[29] Toma, V.: Densities and social choice trade-offs. Tatra Mt. Math. Publ. 31 (2005) 55–63 | MR | Zbl

[30] van Douwen, E. K.: Finitely additive measures on $\mathbb {N}$. Topology and its Applications 47 (1992) 223–268 | MR

[31] Walker, R. C.: The Stone-Čech compactification. Springer-Verlag, Berlin, Heidelberg, New York, 1974 | MR | Zbl