Analysis of the predator-prey model with climax prey population
Communications in Mathematics, Tome 17 (2009) no. 1, pp. 23-31
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The aim of the contribution is to study ODE predator-prey system with a prey population embodying the Allee effect. Particular stationary points are analyzed and the results are illustrated by graphs of numerical solutions for various values of model parameters.
The aim of the contribution is to study ODE predator-prey system with a prey population embodying the Allee effect. Particular stationary points are analyzed and the results are illustrated by graphs of numerical solutions for various values of model parameters.
Classification : 34C60, 92D25
Keywords: Predator-prey model; Allee efect; mathematical model; ordinary differential equations
@article{COMIM_2009_17_1_a3,
     author = {K\"uhnov\'a, Jitka},
     title = {Analysis of the predator-prey model with climax prey population},
     journal = {Communications in Mathematics},
     pages = {23--31},
     year = {2009},
     volume = {17},
     number = {1},
     mrnumber = {2582957},
     zbl = {1241.34060},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a3/}
}
TY  - JOUR
AU  - Kühnová, Jitka
TI  - Analysis of the predator-prey model with climax prey population
JO  - Communications in Mathematics
PY  - 2009
SP  - 23
EP  - 31
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a3/
LA  - en
ID  - COMIM_2009_17_1_a3
ER  - 
%0 Journal Article
%A Kühnová, Jitka
%T Analysis of the predator-prey model with climax prey population
%J Communications in Mathematics
%D 2009
%P 23-31
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a3/
%G en
%F COMIM_2009_17_1_a3
Kühnová, Jitka. Analysis of the predator-prey model with climax prey population. Communications in Mathematics, Tome 17 (2009) no. 1, pp. 23-31. http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a3/

[1] Britton, N. F.: Essential Mathematical Biology. Springer-Verlag London Limited, 2003 | MR | Zbl

[2] Kalas, J., Pospíšil, Z.: Spojité modely v biologii. Brno, 2001

[3] Murray, J. D.: Mathematical Biology. Springer-Verlag Berlin Heidelberg, 1989 | MR | Zbl