On a generalization of Helmholtz conditions
Communications in Mathematics, Tome 17 (2009) no. 1, pp. 11-21
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Helmholtz conditions in the calculus of variations are necessary and sufficient conditions for a system of differential equations to be variational ‘as it stands’. It is known that this property geometrically means that the dynamical form representing the equations can be completed to a closed form. We study an analogous property for differential forms of degree 3, so-called Helmholtz-type forms in mechanics ($n=1$), and obtain a generalization of Helmholtz conditions to this case.
Helmholtz conditions in the calculus of variations are necessary and sufficient conditions for a system of differential equations to be variational ‘as it stands’. It is known that this property geometrically means that the dynamical form representing the equations can be completed to a closed form. We study an analogous property for differential forms of degree 3, so-called Helmholtz-type forms in mechanics ($n=1$), and obtain a generalization of Helmholtz conditions to this case.
Classification : 58A10, 58A20, 58E30, 70G45
Keywords: Lagrangian; Euler-Lagrange form; dynamical form; Helmholtz-type form; Helmholtz form; Helmholtz conditions
@article{COMIM_2009_17_1_a2,
     author = {Mal{\'\i}kov\'a, Radka},
     title = {On a generalization of {Helmholtz} conditions},
     journal = {Communications in Mathematics},
     pages = {11--21},
     year = {2009},
     volume = {17},
     number = {1},
     mrnumber = {2582956},
     zbl = {1238.58001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a2/}
}
TY  - JOUR
AU  - Malíková, Radka
TI  - On a generalization of Helmholtz conditions
JO  - Communications in Mathematics
PY  - 2009
SP  - 11
EP  - 21
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a2/
LA  - en
ID  - COMIM_2009_17_1_a2
ER  - 
%0 Journal Article
%A Malíková, Radka
%T On a generalization of Helmholtz conditions
%J Communications in Mathematics
%D 2009
%P 11-21
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a2/
%G en
%F COMIM_2009_17_1_a2
Malíková, Radka. On a generalization of Helmholtz conditions. Communications in Mathematics, Tome 17 (2009) no. 1, pp. 11-21. http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a2/

[1] Anderson, I.: The Variational Bicomplex. (Technical Report, Utah State University, 1989)

[2] Crampin, M., Prince, G. E., Thompson, G.: A geometric version of the Helmholtz conditions in time dependent Lagrangian dynamics. J. Phys. A: Math. Gen. 17 (1984) 1437–1447 | DOI | MR

[3] Dedecker, P., Tulczyjew, W. M.: Spectral sequences and the inverse problem of the calculus of variation. Proc. Internat. Coll. on Diff. Geom. Methods in Math. Phys., Salamanca 1979, In: Lecture Notes in Math. 836 (Berlin: Springer, 1980) 498–503 | MR

[4] Helmholtz, H.: Über der physikalische Bedeutung des Princips der kleinsten Wirkung. J. Reine Angew. Math. 100 (1887) 137–166

[5] Klapka, L.: Euler-Lagrange expressions and closed two-forms in higher order mechanics. In: Geometrical Methods in Physics, Proc. Conf. on Diff. Geom. and Appl. Vol. 2, Nové Město na Moravě, 1983, Krupka, D., Ed. (J. E. Purkyně Univ. Brno, Czechoslovakia, 1984) 149–153 | MR | Zbl

[6] Krupka, D.: Lepagean forms in higher order variational theory. In: Modern Developments in Analytical Mechanics I: Geometrical Dynamics, Proc. IUTAM-ISIMM Symposium, Torino, Italy, 1982 (Accad. Sci. Torino, Torino, 1983) 197–238 | MR | Zbl

[7] Krupka, D.: Some Geometric Aspects of Variational Problems in Fibered Manifolds. Folia Fac. Sci. Nat. Univ. Purk. Brunensis, Physica 14, Brno, Czechoslovakia, 1973; ArXiv:math-ph/0110005

[8] Krupka, D.: Variational Sequence on Finite Order Jet Spaces. In: Differential Geometry and its Applications, Proc. Conf., Brno, Czechoslovakia, 1989, Janyška, J. and Krupka, D., Eds. (World Scientific, Singapore, 1990) 236–254 | MR

[9] Krupka, D.: Variational Sequences in Mechanics. Calc. Var. 5, 557–583(1997) | DOI | MR | Zbl

[10] Krupka, D.: Global variational principles: Foundations and current problems. In: Global Analysis and Applied Mathematics (AIP Conference Proceedings 729, American Institute of Physics, 2004) 3–18 | MR | Zbl

[11] Krupka, D., Šeděnková, J.: Variational Sequences and Lepage Forms. In: Proceedings of Conference Differential Geometry and its Applications, Prague, 2004, Ed. by Bureš, J., Kowalski, O., Krupka, D., Slovák, J. (Charles Univ., Prague, Czech Republic, 2005), pp. 605–615 | Zbl

[12] Krupka, D., Krupková, O., Prince, G., Sarlet, W.: Contact symmetries of the Helmholtz form. Differential Geometry and its Applications 25 (2007) 518–542 | MR

[13] Krupková, O.: Lepagean $2$-Forms in Higher Order Hamiltonian Mechanics, I. Regularity. Arch. Math. (Brno) 22 (1986) 97–120 | MR

[14] Krupková, O.: The Geometry of Ordinary Variational Equations. Lecture Notes in Math. 1678 (Springer, Berlin, 1997) | MR

[15] Krupková, O., Prince, G.E.: Lepage Forms, Closed $2$-Forms and Second-Order Ordinary Differential Equations. Russian Mathematics (Iz. VUZ), 2007, Vol. 51, No. 12, pp. 1–16 | MR

[16] Krupková, O., Prince, G.E.: Second Order Ordinary Differential Equations in Jet Bundles and the Inverse Problem of the Calculus of Variations. In: Handbook of Global Analysis (Elsevier, 2008) 841–908 | MR | Zbl

[17] Lepage, Th.: Sur les champs géodésiques du Calcul des Variations. Bull. Acad. Roy. Belg., Cl. des Sciences 22 (1936) 716–729 | Zbl

[18] Saunders, D. J.: The Geometry of Jet Bundles. (Cambridge University Press, 1989) | MR | Zbl

[19] Takens, F.: A Global Version of the Inverse Problem of the Calculus of Variations. J. Diff. Geom. 14, 543–562(1979) | MR | Zbl