Asymptotic comparison of two constructions for large digraphs of given degree and diameter
Communications in Mathematics, Tome 17 (2009) no. 1, pp. 5-9
We compare the asymptotic growth of the order of the digraphs arising from a construction of Comellas and Fiol when applied to Faber-Moore digraphs versus plainly the Faber-Moore digraphs for the corresponding degree and diameter.
We compare the asymptotic growth of the order of the digraphs arising from a construction of Comellas and Fiol when applied to Faber-Moore digraphs versus plainly the Faber-Moore digraphs for the corresponding degree and diameter.
Classification :
05C12, 05C20, 05C30
Keywords: digraph; degree; diameter; voltage assignment; lift
Keywords: digraph; degree; diameter; voltage assignment; lift
@article{COMIM_2009_17_1_a1,
author = {\v{Z}d{\'\i}malov\'a, M\'aria and Stanekov\'a, \v{L}ubica},
title = {Asymptotic comparison of two constructions for large digraphs of given degree and diameter},
journal = {Communications in Mathematics},
pages = {5--9},
year = {2009},
volume = {17},
number = {1},
mrnumber = {2582955},
zbl = {1250.05052},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a1/}
}
TY - JOUR AU - Ždímalová, Mária AU - Staneková, Ľubica TI - Asymptotic comparison of two constructions for large digraphs of given degree and diameter JO - Communications in Mathematics PY - 2009 SP - 5 EP - 9 VL - 17 IS - 1 UR - http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a1/ LA - en ID - COMIM_2009_17_1_a1 ER -
Ždímalová, Mária; Staneková, Ľubica. Asymptotic comparison of two constructions for large digraphs of given degree and diameter. Communications in Mathematics, Tome 17 (2009) no. 1, pp. 5-9. http://geodesic.mathdoc.fr/item/COMIM_2009_17_1_a1/
[1] Commellas, F., Fiol, M. A.: Vertex-symmetric digraphs with small diameter. Discrete Applied Mathematics 58, 1–11, 1995 | MR
[2] Faber, V., Moore, J. W.: High-degree low-diameter interconnection networks with vertex symmetry: the directed case. Technical Report LA-UR-88-1051, Los Alamos National Laboratory, Los Amalos, NM 1988
[3] Gómez, J.: Large vertex-symmetric digraphs, Networks. 50 (4), 241–250, 2007 | DOI | MR
[4] Miller, M., Širáň, J.: Moore graphs and beyond: A survey. Electron. J. Combin., Dynamic Survey DS 14 (published on-line in December 2005), 61 pp, 2005 | Zbl