The tame degree and related invariants of non-unique factorizations
Communications in Mathematics, Tome 16 (2008) no. 1, pp. 57-68
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Local tameness and the finiteness of the catenary degree are two crucial finiteness conditions in the theory of non-unique factorizations in monoids and integral domains. In this note, we refine the notion of local tameness and relate the resulting invariants with the usual tame degree and the $\omega $-invariant. Finally we present a simple monoid which fails to be locally tame and yet has nice factorization properties.
Local tameness and the finiteness of the catenary degree are two crucial finiteness conditions in the theory of non-unique factorizations in monoids and integral domains. In this note, we refine the notion of local tameness and relate the resulting invariants with the usual tame degree and the $\omega $-invariant. Finally we present a simple monoid which fails to be locally tame and yet has nice factorization properties.
Classification : 13A05, 20M14
Keywords: Non-unique factorizations; tame degree; atomic monoids
@article{COMIM_2008_16_1_a5,
     author = {Halter-Koch, Franz},
     title = {The tame degree and related invariants of non-unique factorizations},
     journal = {Communications in Mathematics},
     pages = {57--68},
     year = {2008},
     volume = {16},
     number = {1},
     mrnumber = {2498637},
     zbl = {1196.13005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2008_16_1_a5/}
}
TY  - JOUR
AU  - Halter-Koch, Franz
TI  - The tame degree and related invariants of non-unique factorizations
JO  - Communications in Mathematics
PY  - 2008
SP  - 57
EP  - 68
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2008_16_1_a5/
LA  - en
ID  - COMIM_2008_16_1_a5
ER  - 
%0 Journal Article
%A Halter-Koch, Franz
%T The tame degree and related invariants of non-unique factorizations
%J Communications in Mathematics
%D 2008
%P 57-68
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2008_16_1_a5/
%G en
%F COMIM_2008_16_1_a5
Halter-Koch, Franz. The tame degree and related invariants of non-unique factorizations. Communications in Mathematics, Tome 16 (2008) no. 1, pp. 57-68. http://geodesic.mathdoc.fr/item/COMIM_2008_16_1_a5/

[1] Anderson D. F.: Elasticity of factorizations in integral domains: a survey. Factorization in Integral Domains, D. D. Anderson (ed.), pp. 1–29, Marcel Dekker, 1997 | MR | Zbl

[2] Gao W., Geroldinger A.: On products of k-atoms. Monatsh. Math., to appear. | MR | Zbl

[3] Geroldinger A., Halter-Koch F.: Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory. Chapman & Hall/CRC, 2006. | MR | Zbl

[4] Geroldinger A., Halter-Koch F.: Non-Unique Factorizations: A Survey. Multiplicative Ideal Theory in Commutative Algebra, J.W. Brewer, S. Glaz, W. Heinzer, and B. Olberding (eds.), pp. 217–226, Springer 2006. | MR | Zbl

[5] Geroldinger A., Hassler W.: Local tameness of $v$-noetherian monoids. J. Pure Appl. Algebra 212 (2008), 1509–1524. | DOI | MR | Zbl

[6] Geroldinger A., Hassler W.: Arithmetic of Mori domains and monoids. J. Algebra 319 (2008), 3419–3463. | DOI | MR | Zbl

[7] Halter-Koch F.: Non-Unique factorizations of algebraic integers. Funct. Approx., to appear. | MR | Zbl