Common terms in binary recurrences
Communications in Mathematics, Tome 14 (2006) no. 1, pp. 57-61
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The purpose of this paper is to prove that the common terms of linear recurrences $M(2a,-1,0,b)$ and $N(2c,-1,0,d)$ have at most $2$ common terms if $p=2$, and have at most three common terms if $p>2$ where $D$ and $p$ are fixed positive integers and $p$ is a prime, such that neither $D$ nor $D+p$ is perfect square, further $a,b,c,d$ are nonzero integers satisfying the equations $a^2-Db^2=1$ and $c^2-(D+p)d^2=1$.
The purpose of this paper is to prove that the common terms of linear recurrences $M(2a,-1,0,b)$ and $N(2c,-1,0,d)$ have at most $2$ common terms if $p=2$, and have at most three common terms if $p>2$ where $D$ and $p$ are fixed positive integers and $p$ is a prime, such that neither $D$ nor $D+p$ is perfect square, further $a,b,c,d$ are nonzero integers satisfying the equations $a^2-Db^2=1$ and $c^2-(D+p)d^2=1$.
Classification : 11B37, 11B39, 11D09, 95U50
Keywords: Pell equation; binary sequences
@article{COMIM_2006_14_1_a8,
     author = {Orosz, Erzs\'ebet},
     title = {Common terms in binary recurrences},
     journal = {Communications in Mathematics},
     pages = {57--61},
     year = {2006},
     volume = {14},
     number = {1},
     mrnumber = {2298914},
     zbl = {1132.11007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a8/}
}
TY  - JOUR
AU  - Orosz, Erzsébet
TI  - Common terms in binary recurrences
JO  - Communications in Mathematics
PY  - 2006
SP  - 57
EP  - 61
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a8/
LA  - en
ID  - COMIM_2006_14_1_a8
ER  - 
%0 Journal Article
%A Orosz, Erzsébet
%T Common terms in binary recurrences
%J Communications in Mathematics
%D 2006
%P 57-61
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a8/
%G en
%F COMIM_2006_14_1_a8
Orosz, Erzsébet. Common terms in binary recurrences. Communications in Mathematics, Tome 14 (2006) no. 1, pp. 57-61. http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a8/

[1] Bennett M. A.: On the number of solutions of simultaneous Pell equations. J. Reine Angew. Math., 498 (1998), 173–199. | MR | Zbl

[2] Binz J.: Elemente der Math. 35 (1980), 155.

[3] Hirsch M. D.: Additive sequences. Math. Mag., 50 (1977), 262. | DOI | MR | Zbl

[4] Kiss P.: On Common terms of linear recurrences. Acta Math. Acad. Sci. Hungar. 40 (1–2), (1982), 119–123. | DOI | MR | Zbl

[5] Kiss P.: Közös elemek másodrendű rekurzív sorozatokban. Az egri Ho Si Minh Tanárképző Főiskola füzetei XVI. (1982), 539–546.

[6] Kiss P.: Differences of the terms of linear recurrences. Studia Scientiarum Mathematicarum Hungarica 20 (1985), 285–293. | MR | Zbl

[7] Liptai K.: Közös elemek másodrendű rekurzív sorozatokban. Acta. Acad. Pead. Agriensis, Sect. Math., 21 (1994), 47–54.

[8] Mátyás F.: On common terms of second order linear recurrences. Mat. Sem. Not. (Kobe Univ. Jappan), 9 (1981), 89–97. | MR

[9] Mignotte M.: Intersection des images de certains suites recurrentes lineaires. Theoretical Comput. Sci, 7 (1978), 117–122. | DOI | MR

[10] Mordell L. J.: Diophantine equations. Acad. Press, London, (1969), 270. | MR | Zbl

[11] Revuz G.: Equations deiphanties exponentielles. Bull. Soc. Math. France, Mém., 37 (1974), 139–156. | MR

[12] Schlickewei H. P., Schmidt W. M.: Linear equations in members of recurrence sequences. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 20 (1993), 219–246. | MR | Zbl

[13] Stewart C. L.: On divisors of terms of linear recurrence sequences. J. Reine Angew, Math., 333 (1982), 12–31. | MR | Zbl