Keywords: congruent numbers; quadratic equations; higher degree equations
@article{COMIM_2006_14_1_a7,
author = {Luca, Florian and Szalay, L\'aszl\'o},
title = {Congruent numbers with higher exponents},
journal = {Communications in Mathematics},
pages = {49--55},
year = {2006},
volume = {14},
number = {1},
mrnumber = {2298913},
zbl = {1138.11010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a7/}
}
Luca, Florian; Szalay, László. Congruent numbers with higher exponents. Communications in Mathematics, Tome 14 (2006) no. 1, pp. 49-55. http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a7/
[1] Alter R., Curtz T. B., Kubota K. K: ‘Remarks and results on congruent numbers’. Proc. 3rd S. E. Conf. Combin. Graph Theory Comput., Congr. Num., 6 (1972), 27-35. | MR | Zbl
[2] Darmon H., Granville A.: ‘On the equations $z^m=F(x,y)$ and $Ax^p+By^q=Cz^r$’. Bull. London Math. Soc., 27 (1995), 513–543. | MR
[3] Darmon H., Merel L.: ‘Winding quotients and some variants of Fermat’s Last Theorem’. J. reine angew. Math., 490 (1997), 81-100. | MR | Zbl
[4] Dickson L. E.: History of the theory of numbers. Vol. 2, Diophantine analysis, Washington, 1920, 459-472.
[5] Guy R. K.: Unsolved Problems in Number Theory. (D27, p. 306,) Third Edition, Springer, 2004. | MR | Zbl
[6] Luca F., Szalay L.: ‘Consecutive binomial coefficients satisfying a quadratic relation’. Publ. Math. Debrecen, to appear. | MR | Zbl
[7] Ribet K.: ‘On the equation $a^p+2^\alpha b^p+c^p=0$’. Acta Arith., 79 (1997), 7-16. | MR
[8] Robert S.: ‘Note on a problem of Fibonacci’s’. Proc. London Math. Soc., 11 (1879), 35-44.
[9] Tunnel J. B.: ‘A classical Diophantine’s problem and modular forms of weight $3/2$’. Invent. Math., 72 (1983), 323-334. | DOI | MR