Lucas balancing numbers
Communications in Mathematics, Tome 14 (2006) no. 1, pp. 43-47
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

A positive $n$ is called a balancing number if \[1+2+\cdots +(n-1)=(n+1)+(n+2)+\cdots +(n+r).\] We prove that there is no balancing number which is a term of the Lucas sequence.
A positive $n$ is called a balancing number if \[1+2+\cdots +(n-1)=(n+1)+(n+2)+\cdots +(n+r).\] We prove that there is no balancing number which is a term of the Lucas sequence.
Classification : 11B39, 11D45, 11J86
Keywords: Baker method; Pell equations; recurrence sequences
@article{COMIM_2006_14_1_a6,
     author = {Liptai, K\'alm\'an},
     title = {Lucas balancing numbers},
     journal = {Communications in Mathematics},
     pages = {43--47},
     year = {2006},
     volume = {14},
     number = {1},
     mrnumber = {2298912},
     zbl = {1134.11005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a6/}
}
TY  - JOUR
AU  - Liptai, Kálmán
TI  - Lucas balancing numbers
JO  - Communications in Mathematics
PY  - 2006
SP  - 43
EP  - 47
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a6/
LA  - en
ID  - COMIM_2006_14_1_a6
ER  - 
%0 Journal Article
%A Liptai, Kálmán
%T Lucas balancing numbers
%J Communications in Mathematics
%D 2006
%P 43-47
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a6/
%G en
%F COMIM_2006_14_1_a6
Liptai, Kálmán. Lucas balancing numbers. Communications in Mathematics, Tome 14 (2006) no. 1, pp. 43-47. http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a6/

[1] Baker A., Davenport H.: The equations $3x^2-2=y^2$ and $8x^2-7=z^2$. Quart. J. Math. Oxford (2) 20 (1969), 129–137. | MR

[2] Baker A., Wüstholz G.: Logarithmic forms and group varieties. J. reine angew. Math., 442 (1993), 19–62. | MR

[3] Behera A., Panda G. K.: On the square roots of triangular numbers. Fibonacci Quarterly, 37 No. 2 (1999), 98–105. | MR | Zbl

[4] Ferguson D. E.: Letter to the editor. Fibonacci Quarterly, 8 (1970), 88–89.

[5] Liptai K. : Fibonacci balancing numbers. Fibonacci Quarterly 42 (2004), 330–340. | MR | Zbl

[6] Shorey T. N., Tijdeman R.: Exponential diophantine equations. Cambridge University Press, (1986). | MR | Zbl

[7] Szalay L.: A note on the practical solution of simultaneous Pell type equations. submitted to Comp. Math.