Keywords: Baker method; Pell equations; recurrence sequences
@article{COMIM_2006_14_1_a6,
author = {Liptai, K\'alm\'an},
title = {Lucas balancing numbers},
journal = {Communications in Mathematics},
pages = {43--47},
year = {2006},
volume = {14},
number = {1},
mrnumber = {2298912},
zbl = {1134.11005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a6/}
}
Liptai, Kálmán. Lucas balancing numbers. Communications in Mathematics, Tome 14 (2006) no. 1, pp. 43-47. http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a6/
[1] Baker A., Davenport H.: The equations $3x^2-2=y^2$ and $8x^2-7=z^2$. Quart. J. Math. Oxford (2) 20 (1969), 129–137. | MR
[2] Baker A., Wüstholz G.: Logarithmic forms and group varieties. J. reine angew. Math., 442 (1993), 19–62. | MR
[3] Behera A., Panda G. K.: On the square roots of triangular numbers. Fibonacci Quarterly, 37 No. 2 (1999), 98–105. | MR | Zbl
[4] Ferguson D. E.: Letter to the editor. Fibonacci Quarterly, 8 (1970), 88–89.
[5] Liptai K. : Fibonacci balancing numbers. Fibonacci Quarterly 42 (2004), 330–340. | MR | Zbl
[6] Shorey T. N., Tijdeman R.: Exponential diophantine equations. Cambridge University Press, (1986). | MR | Zbl
[7] Szalay L.: A note on the practical solution of simultaneous Pell type equations. submitted to Comp. Math.