Simultaneous inhomogeneous Diophantine approximation of the values of integral polynomials with respect to Archimedean and non-Archimedean valuations
Communications in Mathematics, Tome 14 (2006) no. 1, pp. 37-42
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove an analogue of the convergence part of Khintchine’s theorem for the simultaneous inhomogeneous Diophantine approximation on the Veronese curve $(x,x^2,\ldots ,x^n)$ with respect to the different valuations. It is an extension of the author’s earlier results.
We prove an analogue of the convergence part of Khintchine’s theorem for the simultaneous inhomogeneous Diophantine approximation on the Veronese curve $(x,x^2,\ldots ,x^n)$ with respect to the different valuations. It is an extension of the author’s earlier results.
Classification : 11J61, 11J83, 11K60
Keywords: inhomogeneous Diophantine approximation; Khintchine type theorem; metric theory of Diophantine approximation; p-adic numbers
@article{COMIM_2006_14_1_a5,
     author = {Kovalevskaya, Ella and Bernik, Vasily},
     title = {Simultaneous inhomogeneous {Diophantine} approximation of the values of integral polynomials with respect to {Archimedean} and {non-Archimedean} valuations},
     journal = {Communications in Mathematics},
     pages = {37--42},
     year = {2006},
     volume = {14},
     number = {1},
     mrnumber = {2298911},
     zbl = {1142.11049},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a5/}
}
TY  - JOUR
AU  - Kovalevskaya, Ella
AU  - Bernik, Vasily
TI  - Simultaneous inhomogeneous Diophantine approximation of the values of integral polynomials with respect to Archimedean and non-Archimedean valuations
JO  - Communications in Mathematics
PY  - 2006
SP  - 37
EP  - 42
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a5/
LA  - en
ID  - COMIM_2006_14_1_a5
ER  - 
%0 Journal Article
%A Kovalevskaya, Ella
%A Bernik, Vasily
%T Simultaneous inhomogeneous Diophantine approximation of the values of integral polynomials with respect to Archimedean and non-Archimedean valuations
%J Communications in Mathematics
%D 2006
%P 37-42
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a5/
%G en
%F COMIM_2006_14_1_a5
Kovalevskaya, Ella; Bernik, Vasily. Simultaneous inhomogeneous Diophantine approximation of the values of integral polynomials with respect to Archimedean and non-Archimedean valuations. Communications in Mathematics, Tome 14 (2006) no. 1, pp. 37-42. http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a5/

[1] Baker A.: On a theorem of Sprindz̆uk. Proc. Roy. Soc. London Ser. A 242 (1966), 92-104.

[2] Beresnevich V., Bernik V., Kleinbock D., Margulies G.A. : Metric Diophantine approximation: the Khintchine-Groshev theorem for non-degenerate ma nifolds. Moscow Math. J. 2 (2002), 203-225. | MR

[3] Beresnevich V.V., Bernik V.I., Kovalevskaya E.I. : On approximation of $p$-adic numbers by $p$-adic algebraic numbers. J. Number Theory 111 (2005), 33-56. | DOI | MR | Zbl

[4] Bernik V.I., Borbat V.N.: Simultaneous approximation of zero values of integral polynomials in $\mathbb {Q}_p$. Proc. of the Steklov Institute of Math. 218 (1997), 53-68 (translated by S.Varhromeev/MAHK Hayka /Interperiodica Publishing (Russia)). | MR

[5] Bernik V.I., Dickinson H., Dodson M.: Approximation of real numbers by integral polynomials. Dokl. Nats. Akad. Nayk Belarusi 42 (1997), 51-54.

[6] Bernik V., Dickinson H., Yuan J.: Inhomogeneous diohantine approximation on polynomials. Acta Arith. 90 (1999), 37-48. | MR

[7] Bernik V.I., Dodson M.M.: Metric Diophantine approximation on manifolds. Cambridge Tracts in Math. Vol. 137. Cambridge Univ. Press, 1999. | MR | Zbl

[8] Bernik V.I., Kalosha N.I.: Simultaneous approximation of zero values of integral polynomials in $\mathbb {R}\times \mathbb {Q}_p$. Dokl. Nats. Akad. Nauk Belarusi. 47 (2003), 19-22. | MR

[9] Bernik V., Kleinbock D., Margulies G.A. : Khintchine type theorems on manifolds: the convergence case for standard and multiplicative versions. Int. Math. Research Notices. 9 (2001), 453-486. | DOI | MR

[10] Bugeaud Y.: Approximation by algebraic numbers. Cambridge Tracts in Math. 169, Cambridge Univ. Press, Cambridge, 2004. | MR | Zbl

[11] Giong, Pan. : Metric inhomogeneous Diophantine approximation on polynomial curves in $\mathbb {Q}_p$ (to appear).

[12] Harman G.: Metric Number Theory. LMS Monograph. New Series. Vol. 18. Claredon Press, 1998. | MR | Zbl

[13] Kleinbock D., Margulies G.A. : Flows on homogeneous space and Diophantine approximation on manifolds. Ann. Math. 148 (1998), 339-360. | DOI | MR

[14] Kleinbock D., Tomanov G. : Flows on $S$-arithmetic homogeneous space and application to metric Diophantine approximation. Preprint Max Plank Institute. Bonn. 2003-65 (2003). | MR

[15] Kovalevskaya E.I.: A metric theorem on the exact order of approximation of zero by values of integral polynomials in $\mathbb {Q}_p$. Dokl. Nats. Akad. Nauk Belarusi. 43 (1999), 34-36. | MR

[16] Kovalevskaya E. : Simultaneous approximation of zero by values of integral polynomials with respect to different valuations. Math. Slovaca. 54 (2004), 479-486. | MR | Zbl

[17] Schmidt W.M.: Diophantine Approximation. Lecture Notes in Math. Vol. 785. Springer-Verlag, 1980. | MR | Zbl

[18] Sprindz̆uk V.G.: Mahler’s problem in metric Number Theory. Nauka i Tehnika, Minsk, 1967 [Transl. Math. Monogr. 25, Amer. Math. Soc., Providence, R.I., 1969]. (Russian) | MR

[19] Sprindz̆uk V.G.: Metric Theory of Diophantine Approximation. Izdatel’stvo Nauka, Mos-kva, 1977 [Jihn Wiley, New York-Toronto-London, 1979 (translation by R. A. Silverman)]. (Russian) | MR

[20] Z̆eludevich F.: Simultine diophantishe Approximationen abha̋ngiger Grőssen in mehreren Metriken. Acta Arithm. 46 (1986), 285-296.

[21] Ustinov A. E.: Inhomogeneous approximation on manifolds in $\mathbb {Q}_p$. Vestsi Nats. Akad. Nauk Belarusi. Ser. fiz.-mat. nauk. No 3 (2005), 30-34 | MR

[22] Ustinov A. E.: Inhomogeneous approximation on manifolds in $\mathbb {C`}$. Vestsi Nats. Akad. Nauk Belarusi. Ser. fiz.-mat. nauk. No 1 (2006), 9-14. | MR