Iterated digit sums, recursions and primality
Communications in Mathematics, Tome 14 (2006) no. 1, pp. 27-35
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We examine the congruences and iterate the digit sums of integer sequences. We generate recursive number sequences from triple and quintuple product identities. And we use second order recursions to determine the primality of special number systems.
We examine the congruences and iterate the digit sums of integer sequences. We generate recursive number sequences from triple and quintuple product identities. And we use second order recursions to determine the primality of special number systems.
Classification : 11A07, 11A51, 11A63, 11B37, 11B39, 11B50
Keywords: sum of digits; recursive sequences; triple product identity; quintuple product; primality testing
@article{COMIM_2006_14_1_a4,
     author = {Ericksen, Larry},
     title = {Iterated digit sums, recursions and primality},
     journal = {Communications in Mathematics},
     pages = {27--35},
     year = {2006},
     volume = {14},
     number = {1},
     mrnumber = {2298910},
     zbl = {1148.11007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a4/}
}
TY  - JOUR
AU  - Ericksen, Larry
TI  - Iterated digit sums, recursions and primality
JO  - Communications in Mathematics
PY  - 2006
SP  - 27
EP  - 35
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a4/
LA  - en
ID  - COMIM_2006_14_1_a4
ER  - 
%0 Journal Article
%A Ericksen, Larry
%T Iterated digit sums, recursions and primality
%J Communications in Mathematics
%D 2006
%P 27-35
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a4/
%G en
%F COMIM_2006_14_1_a4
Ericksen, Larry. Iterated digit sums, recursions and primality. Communications in Mathematics, Tome 14 (2006) no. 1, pp. 27-35. http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a4/

[1] Bondarenko B.A.. : Generalized Pascal Triangles and Pyramids: Their Fractals. Graphs, and Applications, pp. 36-37. Santa Clara, CA: The Fibonacci Association, 1993. | Zbl

[2] Ericksen L. : “Golden Tuple Products.”. To Appear In Applications of Fibonacci Numbers 11, W. Webb (ed.), Dordrecht: Kluwer Academic Publishers, 2006. | MR

[3] Foata D., Han G.-N. : “Jacobi and Watson Identities Combinatorially Revisited.”. From a Web Resource. http://cartan.u-strasbg.fr/$\sim $gnonin/paper/pub81/html.

[4] Kang, Soon-Yi. : “A New Proof Of Winquist’s Identity.”. J. of Combin. Theory, Series A 78 (1997) 313-318. | DOI | MR

[5] Ribenboim P.: “Primality Tests Based on Lucas Sequences.”. 2.V In The Little Book of Bigger Primes, 2nd ed. New York: Springer-Verlag, p. 63, 2004. | MR

[6] Sloane N.J.A.: Sequences $A003010$ & $A095847$. From a Web Resource. http://www.research.att.com/ njas/sequences/

[7] Sloane N.J.A.: $A001175$ “Pisano Number.”. From a Web Resource. http://www.research.att.com/ njas/sequences/

[8] Vajda S. Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications. pp. 177-178. Chichester: Ellis Horwood, 1989. | MR

[9] Weisstein E.W. : “Delannoy Number.”. From a Web Resource. http://mathworld.wolfram.com/DelannoyNumber.html

[10] Weisstein E.W.. : “Lucas-Lehmer Test.”. From a Web Resource. http://mathworld.wolfram.com/Lucas-LehmerTest.html

[11] Wong C.K., Maddox T.W. : “A Generalized Pascal’s Triangle.”. The Fibonacci Quarterly 13:2 (1975) 134-136. | MR