Keywords: sum of digits; recursive sequences; triple product identity; quintuple product; primality testing
@article{COMIM_2006_14_1_a4,
author = {Ericksen, Larry},
title = {Iterated digit sums, recursions and primality},
journal = {Communications in Mathematics},
pages = {27--35},
year = {2006},
volume = {14},
number = {1},
mrnumber = {2298910},
zbl = {1148.11007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a4/}
}
Ericksen, Larry. Iterated digit sums, recursions and primality. Communications in Mathematics, Tome 14 (2006) no. 1, pp. 27-35. http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a4/
[1] Bondarenko B.A.. : Generalized Pascal Triangles and Pyramids: Their Fractals. Graphs, and Applications, pp. 36-37. Santa Clara, CA: The Fibonacci Association, 1993. | Zbl
[2] Ericksen L. : “Golden Tuple Products.”. To Appear In Applications of Fibonacci Numbers 11, W. Webb (ed.), Dordrecht: Kluwer Academic Publishers, 2006. | MR
[3] Foata D., Han G.-N. : “Jacobi and Watson Identities Combinatorially Revisited.”. From a Web Resource. http://cartan.u-strasbg.fr/$\sim $gnonin/paper/pub81/html.
[4] Kang, Soon-Yi. : “A New Proof Of Winquist’s Identity.”. J. of Combin. Theory, Series A 78 (1997) 313-318. | DOI | MR
[5] Ribenboim P.: “Primality Tests Based on Lucas Sequences.”. 2.V In The Little Book of Bigger Primes, 2nd ed. New York: Springer-Verlag, p. 63, 2004. | MR
[6] Sloane N.J.A.: Sequences $A003010$ & $A095847$. From a Web Resource. http://www.research.att.com/ njas/sequences/
[7] Sloane N.J.A.: $A001175$ “Pisano Number.”. From a Web Resource. http://www.research.att.com/ njas/sequences/
[8] Vajda S. Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications. pp. 177-178. Chichester: Ellis Horwood, 1989. | MR
[9] Weisstein E.W. : “Delannoy Number.”. From a Web Resource. http://mathworld.wolfram.com/DelannoyNumber.html
[10] Weisstein E.W.. : “Lucas-Lehmer Test.”. From a Web Resource. http://mathworld.wolfram.com/Lucas-LehmerTest.html
[11] Wong C.K., Maddox T.W. : “A Generalized Pascal’s Triangle.”. The Fibonacci Quarterly 13:2 (1975) 134-136. | MR