Truncatable primes and unavoidable sets of divisors
Communications in Mathematics, Tome 14 (2006) no. 1, pp. 21-25 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We are interested whether there is a nonnegative integer $u_0$ and an infinite sequence of digits $u_1, u_2, u_3, \dots $ in base $b$ such that the numbers $u_0 b^n+u_1 b^{n-1}+\dots + u_{n-1} b +u_n,$ where $n=0,1,2, \dots ,$ are all prime or at least do not have prime divisors in a finite set of prime numbers $S.$ If any such sequence contains infinitely many elements divisible by at least one prime number $p \in S,$ then we call the set $S$ unavoidable with respect to $b$. It was proved earlier that unavoidable sets in base $b$ exist if $b \in \lbrace 2,3,4,6\rbrace ,$ and that no unavoidable set exists in base $b=5.$ Now, we prove that there are no unavoidable sets in base $b \geqslant 3$ if $b-1$ is not square-free. In particular, for $b=10,$ this implies that, for any finite set of prime numbers $\lbrace p_1, \dots , p_k\rbrace ,$ there is a nonnegative integer $u_0$ and $u_1, u_2, \dots \in \lbrace 0,1,\dots ,9\rbrace $ such that the number $u_0 10^n + u_1 10^{n-1}+\dots +u_{n}$ is not divisible by $p_1, \dots , p_k$ for each integer $n \geqslant 0.$
We are interested whether there is a nonnegative integer $u_0$ and an infinite sequence of digits $u_1, u_2, u_3, \dots $ in base $b$ such that the numbers $u_0 b^n+u_1 b^{n-1}+\dots + u_{n-1} b +u_n,$ where $n=0,1,2, \dots ,$ are all prime or at least do not have prime divisors in a finite set of prime numbers $S.$ If any such sequence contains infinitely many elements divisible by at least one prime number $p \in S,$ then we call the set $S$ unavoidable with respect to $b$. It was proved earlier that unavoidable sets in base $b$ exist if $b \in \lbrace 2,3,4,6\rbrace ,$ and that no unavoidable set exists in base $b=5.$ Now, we prove that there are no unavoidable sets in base $b \geqslant 3$ if $b-1$ is not square-free. In particular, for $b=10,$ this implies that, for any finite set of prime numbers $\lbrace p_1, \dots , p_k\rbrace ,$ there is a nonnegative integer $u_0$ and $u_1, u_2, \dots \in \lbrace 0,1,\dots ,9\rbrace $ such that the number $u_0 10^n + u_1 10^{n-1}+\dots +u_{n}$ is not divisible by $p_1, \dots , p_k$ for each integer $n \geqslant 0.$
Classification : 11A41, 11A63, 11B50
Keywords: Prime numbers; truncatable primes; integer expansions; square-free numbers
@article{COMIM_2006_14_1_a3,
     author = {Dubickas, Art\={u}ras},
     title = {Truncatable primes and unavoidable sets of divisors},
     journal = {Communications in Mathematics},
     pages = {21--25},
     year = {2006},
     volume = {14},
     number = {1},
     mrnumber = {2298909},
     zbl = {1127.11010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a3/}
}
TY  - JOUR
AU  - Dubickas, Artūras
TI  - Truncatable primes and unavoidable sets of divisors
JO  - Communications in Mathematics
PY  - 2006
SP  - 21
EP  - 25
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a3/
LA  - en
ID  - COMIM_2006_14_1_a3
ER  - 
%0 Journal Article
%A Dubickas, Artūras
%T Truncatable primes and unavoidable sets of divisors
%J Communications in Mathematics
%D 2006
%P 21-25
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a3/
%G en
%F COMIM_2006_14_1_a3
Dubickas, Artūras. Truncatable primes and unavoidable sets of divisors. Communications in Mathematics, Tome 14 (2006) no. 1, pp. 21-25. http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a3/

[1] Angell I.O., Godwin H.J.: On truncatable primes. Math. Comp., 31 (1977), 265–267. | DOI | MR | Zbl

[2] Bugeaud Y., Dubickas A.: Fractional parts of powers and Sturmian words. C. R. Acad. Sci. Paris, Ser. I, 341 (2005), 69–74. | MR | Zbl

[3] Dubickas A.: Integer parts of powers of Pisot and Salem numbers. Archiv der Math., 79 (2002), 252–257. | DOI | MR | Zbl

[4] Dubickas A.: On the distance from a rational power to the nearest integer. J. Number Theory, 117 (2006), 222–239. | DOI | MR | Zbl

[5] Dubickas A. A. Novikas : Integer parts of powers of rational numbers. Math. Zeitschr., 251 (2005), 635–648. | DOI | MR

[6] Forman W. H.N. Shapiro: An arithmetic property of certain rational powers. Comm. Pure Appl. Math., 20 (1967), 561–573. | DOI | MR

[7] Guy R.K.: Unsolved problems in number theory. Springer–Verlag, New York, 1994. | MR | Zbl

[8] Kahan S. S. Weintraub: Left truncatable primes. J. Recreational Math., 29 (1998), 254–264.

[9] Koksma J.F.: Ein mengen-theoretischer Satz über Gleichverteilung modulo eins. Compositio Math., 2 (1935), 250–258. | MR

[10] Weisstein E.W.: Truncatable prime. From MathWorld - A Wolfram Web Resourse, http://mathworld.wolfram.com/TruncatablePrime.html

[11] Zaimi T.: On integer and fractional parts powers of Salem numbers. Archiv der Math., 87 (2006), 124–128. | DOI | MR