Remarks on several types of convergence of bounded sequences
Communications in Mathematics, Tome 14 (2006) no. 1, pp. 3-12
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper we analyze relations among several types of convergences of bounded sequences, in particulars among statistical convergence, ${\cal I}_u$-convergence, $\varphi $-convergence, almost convergence, strong $p$-Cesàro convergence and uniformly strong $p$-Cesàro convergence.
In this paper we analyze relations among several types of convergences of bounded sequences, in particulars among statistical convergence, ${\cal I}_u$-convergence, $\varphi $-convergence, almost convergence, strong $p$-Cesàro convergence and uniformly strong $p$-Cesàro convergence.
Classification : 11K31, 40A05, 40A25, 40D25
Keywords: sequence; statistical convergence; ${\cal I}$-convergence; almost convergence; Cesàro convergence; uniform convergence; Euler function; prime number; $\varphi $-convergence
@article{COMIM_2006_14_1_a0,
     author = {Bal\'a\v{z}, V. and Strauch, O. and \v{S}al\'at, T.},
     title = {Remarks on several types of convergence of bounded sequences},
     journal = {Communications in Mathematics},
     pages = {3--12},
     year = {2006},
     volume = {14},
     number = {1},
     mrnumber = {2298906},
     zbl = {1124.40001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a0/}
}
TY  - JOUR
AU  - Baláž, V.
AU  - Strauch, O.
AU  - Šalát, T.
TI  - Remarks on several types of convergence of bounded sequences
JO  - Communications in Mathematics
PY  - 2006
SP  - 3
EP  - 12
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a0/
LA  - en
ID  - COMIM_2006_14_1_a0
ER  - 
%0 Journal Article
%A Baláž, V.
%A Strauch, O.
%A Šalát, T.
%T Remarks on several types of convergence of bounded sequences
%J Communications in Mathematics
%D 2006
%P 3-12
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a0/
%G en
%F COMIM_2006_14_1_a0
Baláž, V.; Strauch, O.; Šalát, T. Remarks on several types of convergence of bounded sequences. Communications in Mathematics, Tome 14 (2006) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/COMIM_2006_14_1_a0/

[1] BALÁŽ, V., ŠALÁT, T.: Uniform density $u$ and corresponding $I_u$-convergence. Math. Communication 11 (2006), 1–7.

[2] BROWN, T.C., FREEDMAN, A.R.: Arithmetic progressions in lacunary sets. Mountain J. Math. 17 (1987), 587–596. | MR

[3] BROWN, T.C., FREEDMAN, A.R.: The uniform density of sets of integers and Fermat’s Last Theorem. C. R. Math. Ref. Acad. Sci. Canada XII (1990), 1–6.. | MR

[4] BOURBAKI, N.: Éléments De Mathématique Topologie Générale Livre III. Russian translation: Obščaja topologija Osnovnye struktury, Nauka, Moskva, 1968.

[5] CONNOR, J.S.: The statistical and strong $p$-Cesàro convergence of sequences. Analysis 8 (1988), 47–63. | MR | Zbl

[6] CONNOR, J.S.: Two valued measures and summability. Analysis 10 (1990), 1–6. | MR | Zbl

[7] ERDÖS, P.: Solution of advanced problems: $\varphi $-convergence. Amer. Math. Monthly 85 (1978), 122-123.

[8] FAST, H.: Sur la convergence statistique. Coll. Math. 2 (1951), 241–244. | MR | Zbl

[9] FRIDY, J.A.: On statistical convergence. Analysis 5 (1985), 301-313. | MR | Zbl

[10] GOFFMAN, C.: Functions of finite Baire type. Amer. Math. Monthly 67 (1960), 164-165. | MR | Zbl

[11] KOLODZIEJ, W.: Selected Parts of Mathematical Analysis. PWN, Warszawa, 1970. (Polish) | MR

[12] KOSTYRKO, P., ŠALÁT, T., WILCZINSKI, W.: ${\cal I}$-convergence. Real. Anal. Exchange 26 (2000–2001), 669-686. | MR

[13] KOSTYRKO, P., MÁČAJ, M., ŠALÁT, T., SLEZIAK, M.: ${\cal I}$-convergence and extremal ${\cal I}$-limit points. Math. Slovaca 55 (2005), no. 4,, 443-464. | MR

[14] KOVÁČ, E.: On $\varphi $-convergence and $\varphi $-density. Math. Slovaca 55 (2005), no. 3, 139-150. | MR | Zbl

[15] KUIPERS, L., NIEDERREITER, H.: Uniform Distribution of Sequences. John Wiley & Sons, New York, 1974. | MR

[16] LORENTZ, G.G.: A contribution to theory of divergent sequences. Acta Math. 80 (1948), 167-190. | MR

[17] MADDOX, I.J.: A new type of convergence. Math. Proc. Cambridge Phil. Soc. 83 (1978), 61-64. | MR | Zbl

[18] MADDOX, I.J.: Steinhaus type theorems for sumability matrices. Proc. Amer. Math Soc. 45 (1974), 209-213. | MR

[19] MILLER, H.I., ORHAN, C.: On almost convergent and statistically convergent subsequences. Acta Math. Hung. 43 (2001), 135-151. | MR

[20] PETERSEN, G.: Regular Matrix Transformations. Mc-Graw Hill Publ. Comp., London-New York-Toronto-Sydney, 1966. | MR | Zbl

[21] SCHOENBERG, I.J.: The integrability of certain functions and related sumability methods. Amer. Math. Monthly 66 (1959), 361–375. | MR

[22] STRAUCH, O., PORUBSKÝ, Š.: Distribution of Sequences: A Sampler. Schriftenreihe der Slowakischen Akademie der Wissenschaften, Band 1, Peter Lang, Frankfurt am Main, 2005. | MR

[23] ŠALÁT, T.: On statistically convergent sequences of real numbers. Math. Slovaca 30 (1980), 139-150. | MR

[24] THOMSON, B.S.  : Real Functions,  . Springer-Verlag  , Berlin-Göttingen-Heidelberg-New York-Tokyo, 1985. | MR | Zbl

[25] ZAJÍČEK, L.: Porosity and $\sigma $-porosity. Real. Anal. Exchange 13 (1987–88), 314-350. | MR

[26] WIERDL, M.: Almost everywhere convergence and recurrence along subsequences in ergodic theory. Ph.D. Thesis, The Ohio State University.

[27] WINKLER, R.: Hartman sets, functions and sequences - a survey. Advanced Studies in Pure Mathematics 43 (2006), 1–27. | MR