Keywords: universality; effectivity; Riemann zeta-function; Dirichlet series
@article{COMIM_2005_13_1_a7,
author = {Steuding, J\"orn},
title = {Upper bounds for the density of universality. {II}},
journal = {Communications in Mathematics},
pages = {73--82},
year = {2005},
volume = {13},
number = {1},
mrnumber = {2290420},
zbl = {1251.11059},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a7/}
}
Steuding, Jörn. Upper bounds for the density of universality. II. Communications in Mathematics, Tome 13 (2005) no. 1, pp. 73-82. http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a7/
[1] Bagchi B.: The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series. Ph.D. thesis, Calcutta, Indian Statistical Institute, 1981
[2] Bohr H., Jessen B.: Über die Werteverteilung der Riemannschen Zetafunktion II. Acta Math. 58 (1932), 1-55 | DOI | MR | Zbl
[3] Garunkštis R.: The effective universality theorem for the Riemann zeta-function. in: ‘Special activity in Analytic Number Theory and Diophantine equations’, Proceedings of a workshop at the Max Planck-Institut Bonn 2002, R.B. Heath-Brown and B. Moroz (eds.), Bonner math. Schriften 360 (2003) | MR
[4] Gonek S.M.: Analytic properties of zeta and L-functions. Ph.D. thesis, University of Michigan, 1979 | MR
[5] Lapidus M.L., Frankenhuijsen M. van: Fractal geometry and number theory. Birkhäuser 2000
[6] Laurinčikas A.: The universality of the Lerch zeta-functions. Liet. mat. rink. 37 (1997), 367-375 (in Russian); Lith. Math. J. 37 (1997), 275-280 | MR
[7] Laurinčikas A.: The universality of zeta-functions. in “Proceedings of the Eighth Vilnius Conference on Probability Theory and Mathematical Statistics, Part I”, Acta Appl. Math. 78 (2003), 251-271 | DOI | MR
[8] Levinson N., Montgomery H.L.: Zeros of the derivative of the Riemann zeta-function. Acta Math. 133 (1974), 49-65 | DOI | MR
[9] Matsumoto K.: Probabilistic value-distribution theory of zeta-functions. Sugaku 53 (2001), 279-296 (in Japanese); engl. translation in Sugaku Expositions 17 (2004), 51-71 | MR
[10] Putnam C.R.: On the non-periodicity of the zeros of the Riemann zeta-function. Amer. J. Math. 76 (1954), 97-99 | DOI | MR | Zbl
[11] Putnam C.R.: Remarks on periodic sequences and the Riemann zeta-function. Amer. J. Math. 76 (1954) | MR
[12] Reich A.: Universelle Wertverteilung von Eulerprodukten. Nach. Akad. Wiss. Göttingen, Math.-Phys. Kl. (1977), 1-17 | MR
[13] Reich A.: Wertverteilung von Zetafunktionen. Arch. Math. 34 (1980), 440-451 | MR
[14] Reich A.: Dirichletreihen und gleichverteilte Folgen. Analysis 1 (1981), 303-312 | DOI | MR | Zbl
[15] Steuding J.: Upper bounds for the density of universality. Acta Arith. 107 (2003), 195-202 | DOI | MR
[16] Steuding J.: Value-distribution of L-functions. Habilitation thesis, Frankfurt 2003, to appear in Lecture Notes of Mathematics, Springer | MR | Zbl
[17] Titchmarsh E.C.: The theory of the Riemann zeta-function. 2nd ed., revised by D.R. Heath-Brown, Oxford University Press 1986 | MR | Zbl
[18] Frankenhuijsen M. van: Arithmetic progressions of zeros of the Riemann zeta-function. J. Number Theor. 115 (2005), 360-370 | DOI | MR
[19] Voronin S.M.: Theorem on the ’universality’ of the Riemann zeta-function. Izv. Akad. Nauk SSSR, Ser. Matem. 39 (1975 (in Russian); engl. translation in Math. USSR Izv. 9 (1975), 443-445 | MR | Zbl
[20] Voronin S.M.: Analytic properties of Dirichlet generating functions of arithmetic objects. Ph.D. thesis, Moscow, Steklov Math. Institute, 1977 (in Russian)