Upper bounds for the density of universality. II
Communications in Mathematics, Tome 13 (2005) no. 1, pp. 73-82 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We prove explicit upper bounds for the density of universality for Dirichlet series. This complements previous results [15]. Further, we discuss the same topic in the context of discrete universality. As an application we sharpen and generalize an estimate of Reich concerning small values of Dirichlet series on arithmetic progressions in the particular case of the Riemann zeta-function.
We prove explicit upper bounds for the density of universality for Dirichlet series. This complements previous results [15]. Further, we discuss the same topic in the context of discrete universality. As an application we sharpen and generalize an estimate of Reich concerning small values of Dirichlet series on arithmetic progressions in the particular case of the Riemann zeta-function.
Classification : 11M06, 11M26, 11M41
Keywords: universality; effectivity; Riemann zeta-function; Dirichlet series
@article{COMIM_2005_13_1_a7,
     author = {Steuding, J\"orn},
     title = {Upper bounds for the density of universality. {II}},
     journal = {Communications in Mathematics},
     pages = {73--82},
     year = {2005},
     volume = {13},
     number = {1},
     mrnumber = {2290420},
     zbl = {1251.11059},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a7/}
}
TY  - JOUR
AU  - Steuding, Jörn
TI  - Upper bounds for the density of universality. II
JO  - Communications in Mathematics
PY  - 2005
SP  - 73
EP  - 82
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a7/
LA  - en
ID  - COMIM_2005_13_1_a7
ER  - 
%0 Journal Article
%A Steuding, Jörn
%T Upper bounds for the density of universality. II
%J Communications in Mathematics
%D 2005
%P 73-82
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a7/
%G en
%F COMIM_2005_13_1_a7
Steuding, Jörn. Upper bounds for the density of universality. II. Communications in Mathematics, Tome 13 (2005) no. 1, pp. 73-82. http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a7/

[1] Bagchi B.: The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series. Ph.D. thesis, Calcutta, Indian Statistical Institute, 1981

[2] Bohr H., Jessen B.: Über die Werteverteilung der Riemannschen Zetafunktion II. Acta Math. 58 (1932), 1-55 | DOI | MR | Zbl

[3] Garunkštis R.: The effective universality theorem for the Riemann zeta-function. in: ‘Special activity in Analytic Number Theory and Diophantine equations’, Proceedings of a workshop at the Max Planck-Institut Bonn 2002, R.B. Heath-Brown and B. Moroz (eds.), Bonner math. Schriften 360 (2003) | MR

[4] Gonek S.M.: Analytic properties of zeta and L-functions. Ph.D. thesis, University of Michigan, 1979 | MR

[5] Lapidus M.L., Frankenhuijsen M. van: Fractal geometry and number theory. Birkhäuser 2000

[6] Laurinčikas A.: The universality of the Lerch zeta-functions. Liet. mat. rink. 37 (1997), 367-375 (in Russian); Lith. Math. J. 37 (1997), 275-280 | MR

[7] Laurinčikas A.: The universality of zeta-functions. in “Proceedings of the Eighth Vilnius Conference on Probability Theory and Mathematical Statistics, Part I”, Acta Appl. Math. 78 (2003), 251-271 | DOI | MR

[8] Levinson N., Montgomery H.L.: Zeros of the derivative of the Riemann zeta-function. Acta Math. 133 (1974), 49-65 | DOI | MR

[9] Matsumoto K.: Probabilistic value-distribution theory of zeta-functions. Sugaku 53 (2001), 279-296 (in Japanese); engl. translation in Sugaku Expositions 17 (2004), 51-71 | MR

[10] Putnam C.R.: On the non-periodicity of the zeros of the Riemann zeta-function. Amer. J. Math. 76 (1954), 97-99 | DOI | MR | Zbl

[11] Putnam C.R.: Remarks on periodic sequences and the Riemann zeta-function. Amer. J. Math. 76 (1954) | MR

[12] Reich A.: Universelle Wertverteilung von Eulerprodukten. Nach. Akad. Wiss. Göttingen, Math.-Phys. Kl. (1977), 1-17 | MR

[13] Reich A.: Wertverteilung von Zetafunktionen. Arch. Math. 34 (1980), 440-451 | MR

[14] Reich A.: Dirichletreihen und gleichverteilte Folgen. Analysis 1 (1981), 303-312 | DOI | MR | Zbl

[15] Steuding J.: Upper bounds for the density of universality. Acta Arith. 107 (2003), 195-202 | DOI | MR

[16] Steuding J.: Value-distribution of L-functions. Habilitation thesis, Frankfurt 2003, to appear in Lecture Notes of Mathematics, Springer | MR | Zbl

[17] Titchmarsh E.C.: The theory of the Riemann zeta-function. 2nd ed., revised by D.R. Heath-Brown, Oxford University Press 1986 | MR | Zbl

[18] Frankenhuijsen M. van: Arithmetic progressions of zeros of the Riemann zeta-function. J. Number Theor. 115 (2005), 360-370 | DOI | MR

[19] Voronin S.M.: Theorem on the ’universality’ of the Riemann zeta-function. Izv. Akad. Nauk SSSR, Ser. Matem. 39 (1975 (in Russian); engl. translation in Math. USSR Izv. 9 (1975), 443-445 | MR | Zbl

[20] Voronin S.M.: Analytic properties of Dirichlet generating functions of arithmetic objects. Ph.D. thesis, Moscow, Steklov Math. Institute, 1977 (in Russian)