On pseudoprimes having special forms and a solution of K. Szymiczek’s problem
Communications in Mathematics, Tome 13 (2005) no. 1, pp. 57-71
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We use the properties of $p$-adic integrals and measures to obtain general congruences for Genocchi numbers and polynomials and tangent coefficients. These congruences are analogues of the usual Kummer congruences for Bernoulli numbers, generalize known congruences for Genocchi numbers, and provide new congruences systems for Genocchi polynomials and tangent coefficients.
We use the properties of $p$-adic integrals and measures to obtain general congruences for Genocchi numbers and polynomials and tangent coefficients. These congruences are analogues of the usual Kummer congruences for Bernoulli numbers, generalize known congruences for Genocchi numbers, and provide new congruences systems for Genocchi polynomials and tangent coefficients.
Classification : 11A07, 11B99, 11Y11
Keywords: Pseudoprime; Aurifeuillian pseudoprimes; cyclotomic pseudoprime; strong pseudoprime; superpseudoprimes
@article{COMIM_2005_13_1_a6,
     author = {Rotkiewicz, A.},
     title = {On pseudoprimes having special forms and a solution of {K.~Szymiczek{\textquoteright}s} problem},
     journal = {Communications in Mathematics},
     pages = {57--71},
     year = {2005},
     volume = {13},
     number = {1},
     mrnumber = {2290419},
     zbl = {1207.11006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a6/}
}
TY  - JOUR
AU  - Rotkiewicz, A.
TI  - On pseudoprimes having special forms and a solution of K. Szymiczek’s problem
JO  - Communications in Mathematics
PY  - 2005
SP  - 57
EP  - 71
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a6/
LA  - en
ID  - COMIM_2005_13_1_a6
ER  - 
%0 Journal Article
%A Rotkiewicz, A.
%T On pseudoprimes having special forms and a solution of K. Szymiczek’s problem
%J Communications in Mathematics
%D 2005
%P 57-71
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a6/
%G en
%F COMIM_2005_13_1_a6
Rotkiewicz, A. On pseudoprimes having special forms and a solution of K. Szymiczek’s problem. Communications in Mathematics, Tome 13 (2005) no. 1, pp. 57-71. http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a6/

[1] Alford W.R., Granville A., Pomerance C.: There are infinitely many Carmichael numbers. Ann. of Math. 140 (1994), 703–722. | DOI | MR | Zbl

[2] Brillhart J., Lehmer D. H., Selfridge L., Tuckerman B., Wagstaff S. S., Jr.: Factorizations of $b^n\pm 1$, $b=2,3,5,6,7,10,11,12$ up to high powers. Contemporary Mathematics, Vol. 22, American Mathematical Society, Providence 1983.

[3] Cipolla M.: Sui numeri composti $P$, che verificano la congruenza di Fermat $\alpha ^{P-1}\equiv 1(\mathop {\rm mod}\,P)$. Annali di Matematica (3) 9 (1904), 139–160. | DOI

[4] Dickson L. E.: History of the Theory of Numbers. vol. I, New York 1952.

[5] Duparc H. J. A.: Enige generalizaties van de getallen Van Poulet en Carmichael. Math. Centrum Amsterdam, Rapport Z. W. 1956-005.

[6] Erdős P.: On almost primes. Amer. Math. Monthly 57 (1950), 404–407. | DOI | MR

[7] Granville A. J.: The prime $k$-tuplets conjecture implies that there are arbitrarity long arithmetic progressions of Carmichael numbers. (written communication of December 1995).

[8] Halberstam H., Rotkiewicz A.: A gap theorem for pseudoprimes in arithmetic progression. Acta Arith. 13 (1967/68), 395–404. | MR

[9] Jeans J. A.: The converse of Fermat’s theorem. Messenger of Mathematics 27 (1898), p. 174.

[10] Keller W.: Factors of Fermat numbers and large primes of the form $k\cdot 2^n+1$. Math. Comp., 41 (1983), 661–673. | MR

[11] Keller W.: Prime factors $k\cdot 2^n+1$ of Fermat numbers F_m and complete factoring status of Fermat numbers $F_m$ as of October 5. 2004 URL; http://www.prothsearch.net/fermat.html; Last modified: October 5, 2004.

[12] Kiss E.: Notes on János Bolyai’s researches in number theory. Historia Math. 26 (1999), 68–76. | DOI | MR | Zbl

[13] Knopfmacher J., Porubsky: Topologies Related to Arithmetical Properties of Integral Domains. Expo. Math. 15 (1997), 131–148. | MR | Zbl

[14] Korselt A.: Problème chinois. L’Interm. des Math. 6 (1899), 142-143.

[15] Kraïtchik M.: Théorie des Nombres. Gauthier – Villars, Paris 1922.

[16] Kraïtchik M.: On the factorization of $2^n\pm 1$. Scripta Math. 18 (1952), 39–52.

[17] Křižek M., Luca F., Somer L.: 17 Lectures on Fermat Numbers. From Number Theory to Geometry, Canadian Mathematical Society, Springer 2001. | MR

[18] Lucas E.: Sur la série récurrent de Fermat. Bolletino di Bibliografia e di Storia della Scienze Matematiche e Fisiche 11 (1878), 783–798.

[19] Lucas E.: Théorèmes d’arithmetique. Atti della Reale Accademia delle scienze di Torino 13 (1878), 271–284.

[20] Malo E.: Nombres qui, sans être premiers, vérifient exceptionellement une congruence de Fermat, L’Interm. des Math. 10 (1903), 8.

[21] Mahnke D.: Leibniz and der Suche nach einer allgemeinem Primzahlgleichung. Bibliotheca Math. Vol. 13 (1913), 29–61.

[22] Needham J.: Science and Civilization in China, vol. 3: Mathematics and Sciences of the Heavens and the Earth. Cambridge 1959, p. 54, footnote A. | MR

[23] Pinch Richard G. E.: The pseudoprimes up to $10^{13}$. Algorithmic Number Theory, 4th International Symposium, Proceedings ANTS-IV Leiden, The Netherlands, July 2000, Springer 2000, 456–473. | MR

[24] Pomerance C.: A new lower bound for the pseudoprimes counting function. Illinois J. Math. 26 (1982), 4–9. | MR

[25] Pomerance C., Selfridge J. L., Wagstaff S. S.: The pseudoprimes to $25\cdot 10^9$. Math. Comp. 35 (1980), 1009–1026. | MR

[26] Ribenboim P.: The New Book of Prime Number Records. Springer, New York, 1996. | MR | Zbl

[27] Riesel H.: Prime Numbers and Computer Methods for Factorization. Birkhäuser, Boston-Basel-Berlin, 1994. | MR | Zbl

[28] Rotkiewicz A.: Sur les nombres premiers $p$ et $q$ tels que $pq|2^{pq}-2$. Rend. Circ. Mat. Palermo (2) 11 (1962), 280–282. | DOI | MR | Zbl

[29] Rotkiewicz A.: Sur les nombres pseudopremiers de la forme $ax+b$. C.R. Acad. Sci. Paris 257 (1963), 2601–2604. | MR | Zbl

[30] Rotkiewicz A., Sierpiński W.: Sur l’équation diophantienne $2^x-xy=2$. Publ. Inst. Math. (Beograd) (N.S.) 4 (18) (1964), 135–137. | MR

[31] Rotkiewicz A., Schinzel A.: Sur les nombres pseudopremiers de la forme $ax^2+bxy+cy^2$. ibidem 258 (1964), 3617–3620. | MR

[32] Rotkiewicz A.: Sur les formules donnant des nombres pseudopremiers. Colloq. Math. 12 (1964), 69–72. | MR | Zbl

[33] Rotkiewicz A.: Pseudoprime Numbers and Their Generalizations. Stud. Assoc. Fac. Sci. Univ. Novi Sad, 1972, pp. i+169. | MR | Zbl

[34] Rotkiewicz A.: The solution of W. Sierpiński’s problem. Rend. Circ. Mat. Palermo (2) 28 (1979), 62–64. | DOI | MR | Zbl

[35] Rotkiewicz A., van der Poorten A. I.: On strong pseudoprimes in arithmetic progressions. J. Austral. Math. Soc. Ser. A 29 (1980), 316–321. | DOI | MR | Zbl

[36] Sarrus F.: Démonstration de la fausseté du théorème énoncé à la page 320 du $IX^e$ volume de ce recueil. Annales de Math. Pure Appl. 10 (1819–20), 184–187. | MR

[37] Schinzel A.: On primitive prime factors of $a^n-b^n$. Proc. Cambridge Philos. Soc. 58(1962), 555-562. | MR

[38] Sierpiński W.: Remarque sur une hypothèse des Chinois concernant les nombres $(2^n-2)/n$. Colloq. Math. 1 (1948), 9. | MR

[39] Sierpiński W.: A selection of Problems in the Theory of Numbers. Pergamon Press. New York, 1964. | MR

[40] Sierpiński W.: Elementary Theory of numbers. $2^{\rm nd}$ Engl. ed. revised and enlargend by A. Schinzel, Państwowe Wydawnictwo Naukowe, Warszawa, 1988. | MR

[41] Steuerwald R.: Über die Kongruenz $2^{n-1}\equiv 1(\mathop {\rm mod}\,n)$. S.-B. Math.-Nat. Kl., Bayer. Akad. Win., 1947, 177. | MR

[42] Stevenhagen P.: On Aurifeuillian factorizations. Nederl. Akad. Wetensch. Indag. Math. 49 (1987), 451–468. | DOI | MR | Zbl

[43] Szymiczek K.: Note on Fermat numbers. Elem. Math. 21 (1966), 598. | MR | Zbl

[44] Williams Hugh C.: Edouard Lucas and Primality Testing. Canadian Mathematical Society Series of Monographs and Advanced Texts, vol. 22 A Wiley - Interscience Publication, New York-Chichester-Weinheim-Brisbane-Singapore-Toronto 1998. | MR | Zbl

[45] Zsigmondy K.: Zur Theorie der Potenzreste. Monastsh. Math. 3 (1892), 265–284. | DOI | MR