Keywords: Pseudoprime; Aurifeuillian pseudoprimes; cyclotomic pseudoprime; strong pseudoprime; superpseudoprimes
@article{COMIM_2005_13_1_a6,
author = {Rotkiewicz, A.},
title = {On pseudoprimes having special forms and a solution of {K.~Szymiczek{\textquoteright}s} problem},
journal = {Communications in Mathematics},
pages = {57--71},
year = {2005},
volume = {13},
number = {1},
mrnumber = {2290419},
zbl = {1207.11006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a6/}
}
Rotkiewicz, A. On pseudoprimes having special forms and a solution of K. Szymiczek’s problem. Communications in Mathematics, Tome 13 (2005) no. 1, pp. 57-71. http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a6/
[1] Alford W.R., Granville A., Pomerance C.: There are infinitely many Carmichael numbers. Ann. of Math. 140 (1994), 703–722. | DOI | MR | Zbl
[2] Brillhart J., Lehmer D. H., Selfridge L., Tuckerman B., Wagstaff S. S., Jr.: Factorizations of $b^n\pm 1$, $b=2,3,5,6,7,10,11,12$ up to high powers. Contemporary Mathematics, Vol. 22, American Mathematical Society, Providence 1983.
[3] Cipolla M.: Sui numeri composti $P$, che verificano la congruenza di Fermat $\alpha ^{P-1}\equiv 1(\mathop {\rm mod}\,P)$. Annali di Matematica (3) 9 (1904), 139–160. | DOI
[4] Dickson L. E.: History of the Theory of Numbers. vol. I, New York 1952.
[5] Duparc H. J. A.: Enige generalizaties van de getallen Van Poulet en Carmichael. Math. Centrum Amsterdam, Rapport Z. W. 1956-005.
[6] Erdős P.: On almost primes. Amer. Math. Monthly 57 (1950), 404–407. | DOI | MR
[7] Granville A. J.: The prime $k$-tuplets conjecture implies that there are arbitrarity long arithmetic progressions of Carmichael numbers. (written communication of December 1995).
[8] Halberstam H., Rotkiewicz A.: A gap theorem for pseudoprimes in arithmetic progression. Acta Arith. 13 (1967/68), 395–404. | MR
[9] Jeans J. A.: The converse of Fermat’s theorem. Messenger of Mathematics 27 (1898), p. 174.
[10] Keller W.: Factors of Fermat numbers and large primes of the form $k\cdot 2^n+1$. Math. Comp., 41 (1983), 661–673. | MR
[11] Keller W.: Prime factors $k\cdot 2^n+1$ of Fermat numbers F_m and complete factoring status of Fermat numbers $F_m$ as of October 5. 2004 URL; http://www.prothsearch.net/fermat.html; Last modified: October 5, 2004.
[12] Kiss E.: Notes on János Bolyai’s researches in number theory. Historia Math. 26 (1999), 68–76. | DOI | MR | Zbl
[13] Knopfmacher J., Porubsky: Topologies Related to Arithmetical Properties of Integral Domains. Expo. Math. 15 (1997), 131–148. | MR | Zbl
[14] Korselt A.: Problème chinois. L’Interm. des Math. 6 (1899), 142-143.
[15] Kraïtchik M.: Théorie des Nombres. Gauthier – Villars, Paris 1922.
[16] Kraïtchik M.: On the factorization of $2^n\pm 1$. Scripta Math. 18 (1952), 39–52.
[17] Křižek M., Luca F., Somer L.: 17 Lectures on Fermat Numbers. From Number Theory to Geometry, Canadian Mathematical Society, Springer 2001. | MR
[18] Lucas E.: Sur la série récurrent de Fermat. Bolletino di Bibliografia e di Storia della Scienze Matematiche e Fisiche 11 (1878), 783–798.
[19] Lucas E.: Théorèmes d’arithmetique. Atti della Reale Accademia delle scienze di Torino 13 (1878), 271–284.
[20] Malo E.: Nombres qui, sans être premiers, vérifient exceptionellement une congruence de Fermat, L’Interm. des Math. 10 (1903), 8.
[21] Mahnke D.: Leibniz and der Suche nach einer allgemeinem Primzahlgleichung. Bibliotheca Math. Vol. 13 (1913), 29–61.
[22] Needham J.: Science and Civilization in China, vol. 3: Mathematics and Sciences of the Heavens and the Earth. Cambridge 1959, p. 54, footnote A. | MR
[23] Pinch Richard G. E.: The pseudoprimes up to $10^{13}$. Algorithmic Number Theory, 4th International Symposium, Proceedings ANTS-IV Leiden, The Netherlands, July 2000, Springer 2000, 456–473. | MR
[24] Pomerance C.: A new lower bound for the pseudoprimes counting function. Illinois J. Math. 26 (1982), 4–9. | MR
[25] Pomerance C., Selfridge J. L., Wagstaff S. S.: The pseudoprimes to $25\cdot 10^9$. Math. Comp. 35 (1980), 1009–1026. | MR
[26] Ribenboim P.: The New Book of Prime Number Records. Springer, New York, 1996. | MR | Zbl
[27] Riesel H.: Prime Numbers and Computer Methods for Factorization. Birkhäuser, Boston-Basel-Berlin, 1994. | MR | Zbl
[28] Rotkiewicz A.: Sur les nombres premiers $p$ et $q$ tels que $pq|2^{pq}-2$. Rend. Circ. Mat. Palermo (2) 11 (1962), 280–282. | DOI | MR | Zbl
[29] Rotkiewicz A.: Sur les nombres pseudopremiers de la forme $ax+b$. C.R. Acad. Sci. Paris 257 (1963), 2601–2604. | MR | Zbl
[30] Rotkiewicz A., Sierpiński W.: Sur l’équation diophantienne $2^x-xy=2$. Publ. Inst. Math. (Beograd) (N.S.) 4 (18) (1964), 135–137. | MR
[31] Rotkiewicz A., Schinzel A.: Sur les nombres pseudopremiers de la forme $ax^2+bxy+cy^2$. ibidem 258 (1964), 3617–3620. | MR
[32] Rotkiewicz A.: Sur les formules donnant des nombres pseudopremiers. Colloq. Math. 12 (1964), 69–72. | MR | Zbl
[33] Rotkiewicz A.: Pseudoprime Numbers and Their Generalizations. Stud. Assoc. Fac. Sci. Univ. Novi Sad, 1972, pp. i+169. | MR | Zbl
[34] Rotkiewicz A.: The solution of W. Sierpiński’s problem. Rend. Circ. Mat. Palermo (2) 28 (1979), 62–64. | DOI | MR | Zbl
[35] Rotkiewicz A., van der Poorten A. I.: On strong pseudoprimes in arithmetic progressions. J. Austral. Math. Soc. Ser. A 29 (1980), 316–321. | DOI | MR | Zbl
[36] Sarrus F.: Démonstration de la fausseté du théorème énoncé à la page 320 du $IX^e$ volume de ce recueil. Annales de Math. Pure Appl. 10 (1819–20), 184–187. | MR
[37] Schinzel A.: On primitive prime factors of $a^n-b^n$. Proc. Cambridge Philos. Soc. 58(1962), 555-562. | MR
[38] Sierpiński W.: Remarque sur une hypothèse des Chinois concernant les nombres $(2^n-2)/n$. Colloq. Math. 1 (1948), 9. | MR
[39] Sierpiński W.: A selection of Problems in the Theory of Numbers. Pergamon Press. New York, 1964. | MR
[40] Sierpiński W.: Elementary Theory of numbers. $2^{\rm nd}$ Engl. ed. revised and enlargend by A. Schinzel, Państwowe Wydawnictwo Naukowe, Warszawa, 1988. | MR
[41] Steuerwald R.: Über die Kongruenz $2^{n-1}\equiv 1(\mathop {\rm mod}\,n)$. S.-B. Math.-Nat. Kl., Bayer. Akad. Win., 1947, 177. | MR
[42] Stevenhagen P.: On Aurifeuillian factorizations. Nederl. Akad. Wetensch. Indag. Math. 49 (1987), 451–468. | DOI | MR | Zbl
[43] Szymiczek K.: Note on Fermat numbers. Elem. Math. 21 (1966), 598. | MR | Zbl
[44] Williams Hugh C.: Edouard Lucas and Primality Testing. Canadian Mathematical Society Series of Monographs and Advanced Texts, vol. 22 A Wiley - Interscience Publication, New York-Chichester-Weinheim-Brisbane-Singapore-Toronto 1998. | MR | Zbl
[45] Zsigmondy K.: Zur Theorie der Potenzreste. Monastsh. Math. 3 (1892), 265–284. | DOI | MR