Discrete limit laws for additive functions on the symmetric group
Communications in Mathematics, Tome 13 (2005) no. 1, pp. 47-55 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Inspired by probabilistic number theory, we establish necessary and sufficient conditions under which the numbers of cycles with lengths in arbitrary sets posses an asymptotic limit law. The approach can be extended to deal with the counts of components with the size constraints for other random combinatorial structures.
Inspired by probabilistic number theory, we establish necessary and sufficient conditions under which the numbers of cycles with lengths in arbitrary sets posses an asymptotic limit law. The approach can be extended to deal with the counts of components with the size constraints for other random combinatorial structures.
Classification : 05A16, 05D40, 60C05
Keywords: random permutation; cycle structure; Poisson distribution; factorial moment
@article{COMIM_2005_13_1_a5,
     author = {Manstavi\v{c}ius, Eugenijus},
     title = {Discrete limit laws for additive functions on the symmetric group},
     journal = {Communications in Mathematics},
     pages = {47--55},
     year = {2005},
     volume = {13},
     number = {1},
     mrnumber = {2290418},
     zbl = {1200.60012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a5/}
}
TY  - JOUR
AU  - Manstavičius, Eugenijus
TI  - Discrete limit laws for additive functions on the symmetric group
JO  - Communications in Mathematics
PY  - 2005
SP  - 47
EP  - 55
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a5/
LA  - en
ID  - COMIM_2005_13_1_a5
ER  - 
%0 Journal Article
%A Manstavičius, Eugenijus
%T Discrete limit laws for additive functions on the symmetric group
%J Communications in Mathematics
%D 2005
%P 47-55
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a5/
%G en
%F COMIM_2005_13_1_a5
Manstavičius, Eugenijus. Discrete limit laws for additive functions on the symmetric group. Communications in Mathematics, Tome 13 (2005) no. 1, pp. 47-55. http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a5/

[1] Arratia R., Barbour A.D., Tavaré S.: Logarithmic Combinatorial Structures: a Probabilistic Approach. EMS Monographs in Mathematics, EMS Publishing House, Zürich, 2003. | MR

[2] Arratia R., Tavaré S.: Limit theorems for combinatorial structures via discrete process approximations. Random Structures and Algorithms 3(1992), 3, 321–345. | DOI | MR

[3] Babu G.J., Manstavičius E.: Processes with independent increments for the Ewens sampling formula. Ann. Inst. Stat. Math. 54(2002), 3, 607–620. | DOI | MR

[4] Elliott P. D. T. A.: Probabilistic Number Theory. I, II. Springer, New York–Heidelberg–Berlin, 1979/80. | MR | Zbl

[5] Goncharov V.L.: On the distribution of cycles in permutations. Dokl. Acad. Nauk SSSR 35(1942), 299–301.

[6] Kolchin V.F.: Random Mappings. Optimization Software, Inc. New York, 1986. | MR | Zbl

[7] Kubilius J.: Probabilistic Methods in the Theory of Numbers. Amer. Math. Soc. Translations 11, Providence, RI, 1964. | MR | Zbl

[8] Manstavičius E.: Additive and multiplicative functions on random permutations. Lith. Math. J. 36(1996), 4, 400–408. | DOI | MR

[9] Manstavičius E.: The law of iterated logarithm for random permutations. Lith. Math. J. 38(1998), 2, 160–171. | DOI | MR

[10] Manstavičius E.: Functional limit theorem for sequences of mappings on the symmetric group. In: Anal. Probab. Methods in Number Theory, A. Dubickas et al (Eds), TEV, Vilnius, 2002, 175–187. | MR

[11] Manstavičius E.: Value concentration of additive functions on random permutations. Acta Applicandae Math. 79(2003), 1–8. | DOI | MR

[12] Manstavičius E.: Asymptotic value distribution of additive functions defined on the symmetric group. (submitted, 2005, 23 p.).

[13] Šiaulys J.: Factorial moments for distributions of additive functions. Lith. Math. J. 40(2000), 4, 389–408. | DOI