The joint distribution of additive and complex-valued multiplicative functions
Communications in Mathematics, Tome 13 (2005) no. 1, pp. 35-46 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the paper the necessary and sufficient conditions for the existence of joint limit distribution for real additive and complex-valued multiplicative function are presented.
In the paper the necessary and sufficient conditions for the existence of joint limit distribution for real additive and complex-valued multiplicative function are presented.
Classification : 11N60
Keywords: additive function; characteristic transform; probability measure; multiplicative function; weak convergence
@article{COMIM_2005_13_1_a4,
     author = {Laurin\v{c}ikas, Antanas},
     title = {The joint distribution of additive and complex-valued multiplicative functions},
     journal = {Communications in Mathematics},
     pages = {35--46},
     year = {2005},
     volume = {13},
     number = {1},
     mrnumber = {2290417},
     zbl = {1207.11102},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a4/}
}
TY  - JOUR
AU  - Laurinčikas, Antanas
TI  - The joint distribution of additive and complex-valued multiplicative functions
JO  - Communications in Mathematics
PY  - 2005
SP  - 35
EP  - 46
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a4/
LA  - en
ID  - COMIM_2005_13_1_a4
ER  - 
%0 Journal Article
%A Laurinčikas, Antanas
%T The joint distribution of additive and complex-valued multiplicative functions
%J Communications in Mathematics
%D 2005
%P 35-46
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a4/
%G en
%F COMIM_2005_13_1_a4
Laurinčikas, Antanas. The joint distribution of additive and complex-valued multiplicative functions. Communications in Mathematics, Tome 13 (2005) no. 1, pp. 35-46. http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a4/

[1] Bakštys A.: On limit distribution laws for arithmetic multiplicative functions. Liet. matem. rink., 8 (1968), 5–20 (in Russian).

[2] Delange H.: On the distribution modulo 1 of additive functions. J. Indian Math. Soc., 39 (1970), 215–235. | MR

[3] Delange H.: Sur la distribution des valeurs des fonctions multiplicative complexes. C. R. Acad. Sc. Paris, 276, Série A (1973), 161–164. | MR

[4] Erdös P.: On the density of some sequences of numbers. III, J. London Math. Soc. 13 (1938), 119–127. | DOI

[5] Erdös P.: Some remarks about additive and multiplicative functions. Bull. Amer. Math. Soc., 52 (1946), 527–537. | DOI | MR

[6] Erdös P. A. Wintner: Additive arithmetical functions and statistical independence. Amer. J. Math. 61 (1939), 713–721. | DOI | MR

[7] Halász G.: Über die Mittelwerte multikativer zahlentheoreticher Funktionen. Acta Math. Sci. Hung., 19(1968), 365–403. | DOI | MR

[8] Laurinčikas A.: On joint value distribution of additive and multiplicative functions. Liet. matem. rink., 16(2)(1976), 190–192 (in Russian).

[9] Laurinčikas A.: On joint distribution of values of arithmetical functions. Liet. matem. rink., 31(3)(1991), 433–454 (in Russian). | MR

[10] Laurinčikas A.: Limit Theorems for the Riemann Zeta-Function. Kluwer, Dordrecht, Boston, London, 1996. | MR

[11] Laurinčikas A.: The joint distribution of the Riemann zeta-function. 2005, submitted. | MR

[12] Levin B. V., Timofeev N. M.: Analytic method in probabilistic number theory. Uch. zap. Vladim. gos. ped. inst., 57(2) (1971), 57–150 (in Russian). | MR

[13] Levin B. V., Timofeev N. M., Tuliaganov S. T.: Distribution of values of multiplicative functions. Liet. matem. rink., 13(1) (1973), 87–100 (in Russian). | MR