Matching local Witt invariants
Communications in Mathematics, Tome 13 (2005) no. 1, pp. 29-34 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The starting point of this note is the observation that the local condition used in the notion of a Hilbert-symbol equivalence and a quaternion-symbol equivalence — once it is expressed in terms of the Witt invariant — admits a natural generalisation. In this paper we show that for global function fields as well as the formally real function fields over a real closed field all the resulting equivalences coincide.
The starting point of this note is the observation that the local condition used in the notion of a Hilbert-symbol equivalence and a quaternion-symbol equivalence — once it is expressed in terms of the Witt invariant — admits a natural generalisation. In this paper we show that for global function fields as well as the formally real function fields over a real closed field all the resulting equivalences coincide.
Classification : 11E10, 11E81, 14H05, 14P05, 16K50
Keywords: Witt invariant; Brauer group; Brauer-Wall group; Witt equivalence
@article{COMIM_2005_13_1_a3,
     author = {Koprowski, Przemys{\l}aw},
     title = {Matching local {Witt} invariants},
     journal = {Communications in Mathematics},
     pages = {29--34},
     year = {2005},
     volume = {13},
     number = {1},
     mrnumber = {2290416},
     zbl = {1251.11023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a3/}
}
TY  - JOUR
AU  - Koprowski, Przemysław
TI  - Matching local Witt invariants
JO  - Communications in Mathematics
PY  - 2005
SP  - 29
EP  - 34
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a3/
LA  - en
ID  - COMIM_2005_13_1_a3
ER  - 
%0 Journal Article
%A Koprowski, Przemysław
%T Matching local Witt invariants
%J Communications in Mathematics
%D 2005
%P 29-34
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a3/
%G en
%F COMIM_2005_13_1_a3
Koprowski, Przemysław. Matching local Witt invariants. Communications in Mathematics, Tome 13 (2005) no. 1, pp. 29-34. http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a3/

[1] Czogała A. : Równoważność Hilberta ciał globalnych. volume 1969 of Prace Naukowe Uniwersytetu Śląskiego w Katowicach [Scientific Publications of the University of Silesia]. Wydawnictwo Uniwersytetu Śląskiego, Katowice, 2001. | MR

[2] Koprowski P. : Local-global principle for Witt equivalence of function fields over global fields. Colloq. Math., 91(2):293–302, 2002. | DOI | MR | Zbl

[3] Koprowski P. : Witt equivalence of algebraic function fields over real closed fields. Math. Z., 242(2):323–345, 2002. | DOI | MR | Zbl

[4] Koprowski P. : Integral equivalence of real algebraic function fields. Tatra Mt. Math. Publ., 34:53–61, 2005. | MR | Zbl

[5] Lam T. Y. : Introduction to quadratic forms over fields. volume 67 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2005. | MR | Zbl

[6] Perlis R., Szymiczek K., Conner P. E., Litherland R. : Matching Witts with global fields. In Recent advances in real algebraic geometry and quadratic forms (Berkeley, CA, 1990/1991; San Francisco, CA, 1991), volume 155 of Contemp. Math., pages 365–387. Amer. Math. Soc., Providence, RI, 1994. | MR

[7] Szymiczek K. : Matching Witts locally and globally. Math. Slovaca, 41(3):315–330, 1991. | MR | Zbl

[8] Szymiczek K. : Witt equivalence of global fields. Comm. Algebra, 19(4):1125–1149, 1991. | MR

[9] Szymiczek K. : Hilbert-symbol equivalence of number fields. Tatra Mt. Math. Publ., 11:7–16, 1997. | MR | Zbl

[10] Szymiczek K. : A characterization of tame Hilbert-symbol equivalence. Acta Math. Inform. Univ. Ostraviensis, 6(1):191–201, 1998. | MR | Zbl