Keywords: Laplace transform; probability measure; Riemann zeta-function; weak convergence
@article{COMIM_2005_13_1_a2,
author = {Ka\v{c}inskait\.{e}, R. and Laurin\v{c}ikas, A.},
title = {Discrete limit theorems for the {Laplace} transform of the {Riemann} zeta-function},
journal = {Communications in Mathematics},
pages = {19--27},
year = {2005},
volume = {13},
number = {1},
mrnumber = {2290415},
zbl = {1251.11055},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a2/}
}
TY - JOUR AU - Kačinskaitė, R. AU - Laurinčikas, A. TI - Discrete limit theorems for the Laplace transform of the Riemann zeta-function JO - Communications in Mathematics PY - 2005 SP - 19 EP - 27 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a2/ LA - en ID - COMIM_2005_13_1_a2 ER -
Kačinskaitė, R.; Laurinčikas, A. Discrete limit theorems for the Laplace transform of the Riemann zeta-function. Communications in Mathematics, Tome 13 (2005) no. 1, pp. 19-27. http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a2/
[1] Atkinson F. V.: The mean value of the Riemann zeta-function. Acta Math., 81 (1949), 353–376. | DOI | MR | Zbl
[2] Billingsley P.: Convergence of Probability Measures. Wiley, New York, 1968. | MR | Zbl
[3] Conway J. B.: Functions of One Complex Variable. Springer-Verlag, New York, 1973. | MR | Zbl
[4] Heyer H.: Probability Measures on Locally Compact Groups. Springer-Verlag, Berlin, 1977. | MR | Zbl
[5] Ivič A.: The Riemann Zeta-Function. Wiley, New York, 1985. | MR
[6] Jutila M.: Atkinson’s formula revisited. in: Voronoi’s Impact in Modern Science, Book 1, Proc. Inst. Math. National Acad. Sc. Ukraine, Vol. 21, P. Engel and H. Syta (Eds), Inst. Math., Kyiv, 1998, pp. 137–154. | Zbl
[7] Laurinčikas A.: Limit theorems for the Laplace transform of the Riemann zeta-function. Integral Transf. Special Functions (to appear). | MR