Strong versions of Kummer-type congruences for Genocchi numbers and polynomials and tangent coefficients
Communications in Mathematics, Tome 13 (2005) no. 1, pp. 3-11 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We use the properties of $p$-adic integrals and measures to obtain general congruences for Genocchi numbers and polynomials and tangent coefficients. These congruences are analogues of the usual Kummer congruences for Bernoulli numbers, generalize known congruences for Genocchi numbers, and provide new congruences systems for Genocchi polynomials and tangent coefficients.
We use the properties of $p$-adic integrals and measures to obtain general congruences for Genocchi numbers and polynomials and tangent coefficients. These congruences are analogues of the usual Kummer congruences for Bernoulli numbers, generalize known congruences for Genocchi numbers, and provide new congruences systems for Genocchi polynomials and tangent coefficients.
Classification : 11B68, 11B83, 11S80
Keywords: $p$-adic integral; $p$-adic measures; Bernoulli numbers; Genocchi numbers; Genocchi polynomials; tangent coefficients; Kummer congruences
@article{COMIM_2005_13_1_a0,
     author = {Cenkci, Mehmet},
     title = {Strong versions of {Kummer-type} congruences for {Genocchi} numbers and polynomials and tangent coefficients},
     journal = {Communications in Mathematics},
     pages = {3--11},
     year = {2005},
     volume = {13},
     number = {1},
     mrnumber = {2290413},
     zbl = {1207.11028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a0/}
}
TY  - JOUR
AU  - Cenkci, Mehmet
TI  - Strong versions of Kummer-type congruences for Genocchi numbers and polynomials and tangent coefficients
JO  - Communications in Mathematics
PY  - 2005
SP  - 3
EP  - 11
VL  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a0/
LA  - en
ID  - COMIM_2005_13_1_a0
ER  - 
%0 Journal Article
%A Cenkci, Mehmet
%T Strong versions of Kummer-type congruences for Genocchi numbers and polynomials and tangent coefficients
%J Communications in Mathematics
%D 2005
%P 3-11
%V 13
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a0/
%G en
%F COMIM_2005_13_1_a0
Cenkci, Mehmet. Strong versions of Kummer-type congruences for Genocchi numbers and polynomials and tangent coefficients. Communications in Mathematics, Tome 13 (2005) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a0/

[1] Carlitz L.: Some congruences for Bernoulli numbers. Amer. J. Math. 75 (1953) 163-172. | DOI | MR | Zbl

[2] Carlitz L.: The Staudt-Clausen theorem. Math. Mag. 34 (1961) 131-146. | DOI | MR | Zbl

[3] Carlitz L.: Degenerate Stirling, Bernoulli and Eulerian numbers. Utilitas Math. 15 (1979) 51-88. | MR | Zbl

[4] Comtet L.: “Advanced Combinatorics. The Art of Finite and Infinite Expansions”. Revised and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974. | MR | Zbl

[5] Dumont D.: Interprètations combinatories des nombres de Genocchi. Duke Math. J. 41 (1974) 305-318. | MR

[6] Dumont D. G. Vinnot: A combinatorial interpretation of the Siedel generation of Genocchi numbers. Ann. Discrete Math. 6 (1980) 77-87. | DOI | MR

[7] Dumont D. A. Randrianarivony: Dèrangements et nombres de Genocchi. Discrete Math. 132 (1994) 37-49. | DOI | MR

[8] Dwork B.: “Lectures on $p$-Adic Differential Equations”. Springer-Verlag, New York, 1982. | MR | Zbl

[9] Fox G. J.: Kummer congruences for expressions involving generalized Bernoulli polynomials. J. Thèor. Nombres de Bordeaux 14 (2000) 187-204. | DOI | MR | Zbl

[10] Howard F. T.: Applications of a recurrence for Bernoulli numbers. J. Number Theory 52 (1995) 157-172. | DOI | MR

[11] Jang L., Kim T., Park D.-W.: Kummer congruences Bernoulli numbers of higher order. App. Math. Comput. 151 (2004) 589-593. | DOI | MR

[12] Yang Y., Kim D. S.: On higher order generalized Bernoulli numbers. App. Math. Comput. 137 (2003) 387-398. | DOI | MR

[13] Nörlund N.: “Vorlesungen Über Differenzenrechnung”. Chelsea, New York, 1954.

[14] Ramanujan S.: “Collected Papers”. Chelsea, New York, 1962. | MR

[15] Tsumura H.: On $p$-adic interpolation of the generalized Euler numbers and its applications. Tokyo J. Math. 10 (1987) 281-293. | DOI | MR

[16] Washington L.: “Introduction to Cyclotomic Fields”, Springer-Verlag. New York, 1982. | MR

[17] Young P. T.: Congruences for Bernoulli, Euler and Stirling numbers. J. Number Theory 78 (1999) 204-227. | DOI | MR | Zbl

[18] Young P. T.: Kummer congruences for values of Bernoulli and Euler polynomials. Acta Arith. 99 (2001) 277-288. | DOI | MR | Zbl

[19] Young P. T.: Congruences for degenerate number sequences. Discrete Math. 270 (2003) 279-289. | DOI | MR | Zbl

[20] Young P. T.: Degenerate and $n$-adic versions of Kummer’s congruences for values of Bernoulli polynomials. Discrete Math. 285 (2004) 289-296. | DOI | MR | Zbl