Keywords: $p$-adic integral; $p$-adic measures; Bernoulli numbers; Genocchi numbers; Genocchi polynomials; tangent coefficients; Kummer congruences
@article{COMIM_2005_13_1_a0,
author = {Cenkci, Mehmet},
title = {Strong versions of {Kummer-type} congruences for {Genocchi} numbers and polynomials and tangent coefficients},
journal = {Communications in Mathematics},
pages = {3--11},
year = {2005},
volume = {13},
number = {1},
mrnumber = {2290413},
zbl = {1207.11028},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a0/}
}
TY - JOUR AU - Cenkci, Mehmet TI - Strong versions of Kummer-type congruences for Genocchi numbers and polynomials and tangent coefficients JO - Communications in Mathematics PY - 2005 SP - 3 EP - 11 VL - 13 IS - 1 UR - http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a0/ LA - en ID - COMIM_2005_13_1_a0 ER -
Cenkci, Mehmet. Strong versions of Kummer-type congruences for Genocchi numbers and polynomials and tangent coefficients. Communications in Mathematics, Tome 13 (2005) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/COMIM_2005_13_1_a0/
[1] Carlitz L.: Some congruences for Bernoulli numbers. Amer. J. Math. 75 (1953) 163-172. | DOI | MR | Zbl
[2] Carlitz L.: The Staudt-Clausen theorem. Math. Mag. 34 (1961) 131-146. | DOI | MR | Zbl
[3] Carlitz L.: Degenerate Stirling, Bernoulli and Eulerian numbers. Utilitas Math. 15 (1979) 51-88. | MR | Zbl
[4] Comtet L.: “Advanced Combinatorics. The Art of Finite and Infinite Expansions”. Revised and enlarged edition, D. Reidel Publishing Co., Dordrecht, 1974. | MR | Zbl
[5] Dumont D.: Interprètations combinatories des nombres de Genocchi. Duke Math. J. 41 (1974) 305-318. | MR
[6] Dumont D. G. Vinnot: A combinatorial interpretation of the Siedel generation of Genocchi numbers. Ann. Discrete Math. 6 (1980) 77-87. | DOI | MR
[7] Dumont D. A. Randrianarivony: Dèrangements et nombres de Genocchi. Discrete Math. 132 (1994) 37-49. | DOI | MR
[8] Dwork B.: “Lectures on $p$-Adic Differential Equations”. Springer-Verlag, New York, 1982. | MR | Zbl
[9] Fox G. J.: Kummer congruences for expressions involving generalized Bernoulli polynomials. J. Thèor. Nombres de Bordeaux 14 (2000) 187-204. | DOI | MR | Zbl
[10] Howard F. T.: Applications of a recurrence for Bernoulli numbers. J. Number Theory 52 (1995) 157-172. | DOI | MR
[11] Jang L., Kim T., Park D.-W.: Kummer congruences Bernoulli numbers of higher order. App. Math. Comput. 151 (2004) 589-593. | DOI | MR
[12] Yang Y., Kim D. S.: On higher order generalized Bernoulli numbers. App. Math. Comput. 137 (2003) 387-398. | DOI | MR
[13] Nörlund N.: “Vorlesungen Über Differenzenrechnung”. Chelsea, New York, 1954.
[14] Ramanujan S.: “Collected Papers”. Chelsea, New York, 1962. | MR
[15] Tsumura H.: On $p$-adic interpolation of the generalized Euler numbers and its applications. Tokyo J. Math. 10 (1987) 281-293. | DOI | MR
[16] Washington L.: “Introduction to Cyclotomic Fields”, Springer-Verlag. New York, 1982. | MR
[17] Young P. T.: Congruences for Bernoulli, Euler and Stirling numbers. J. Number Theory 78 (1999) 204-227. | DOI | MR | Zbl
[18] Young P. T.: Kummer congruences for values of Bernoulli and Euler polynomials. Acta Arith. 99 (2001) 277-288. | DOI | MR | Zbl
[19] Young P. T.: Congruences for degenerate number sequences. Discrete Math. 270 (2003) 279-289. | DOI | MR | Zbl
[20] Young P. T.: Degenerate and $n$-adic versions of Kummer’s congruences for values of Bernoulli polynomials. Discrete Math. 285 (2004) 289-296. | DOI | MR | Zbl