Some monomial curves as set-theoretic complete intersections
Communications in Mathematics, Tome 12 (2004) no. 1, pp. 33-39
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 14H45, 14M10, 14Q05, 14R05
@article{COMIM_2004_12_1_a4,
     author = {Hole\v{s}ov\'a, Michaela},
     title = {Some monomial curves as set-theoretic complete intersections},
     journal = {Communications in Mathematics},
     pages = {33--39},
     year = {2004},
     volume = {12},
     number = {1},
     mrnumber = {2214671},
     zbl = {1114.14303},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2004_12_1_a4/}
}
TY  - JOUR
AU  - Holešová, Michaela
TI  - Some monomial curves as set-theoretic complete intersections
JO  - Communications in Mathematics
PY  - 2004
SP  - 33
EP  - 39
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2004_12_1_a4/
LA  - en
ID  - COMIM_2004_12_1_a4
ER  - 
%0 Journal Article
%A Holešová, Michaela
%T Some monomial curves as set-theoretic complete intersections
%J Communications in Mathematics
%D 2004
%P 33-39
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2004_12_1_a4/
%G en
%F COMIM_2004_12_1_a4
Holešová, Michaela. Some monomial curves as set-theoretic complete intersections. Communications in Mathematics, Tome 12 (2004) no. 1, pp. 33-39. http://geodesic.mathdoc.fr/item/COMIM_2004_12_1_a4/

[1] H. Bresinsky: Binomial generating sets for monomial curves, with applications in A4. Rend. Sem. Mat., Univers. Politecn. Torino, 46, 1988, pp. 353-370. | MR

[2] H. Bresinsky: Monomial Gorenstein curves in A4 as set-theoretic complete intersections. Manuscripta Math, 27, 1979, pp. 353-358. | DOI | MR

[3] H. Bresinsky: Symmetric semigroup of integers generated by 4 elements. Manuscripta Math, 17, 1975, pp. 205-219. | DOI | MR

[4] D. Cox J. Little D. O'Shea: Using Algebraic Geometry. Graduate Texts in Mathematics, Volume 185, Springer-Verlag, 1998. | MR

[5] W. Gastinger: Über die Verschwindungsideale monomialer Kurven. Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften, Landshut, 1989.

[6] E. Kunz: Einführung in die kommutative Algebra und algebraische Geometric. Vieweg, Braunschweig, 1980. | MR

[7] S. Solčan: Monomiálne krivky $C(p^2, p^2 +p, p^2 +p+1, (p + 1)^2)$ ako množinové úplné prieniky. Zbornik vedeckých prác z medzinárodnej vedeckej konferencie Matematika vo výučbe, výskume a praxi, Nitra 2002, pp. 94 - 97.

[8] M. Turčanová: Niektoré monomiálne křivky v $A^4$ ako množinový úplný prienik. Rigorózna práca, FMFI UK Bratislava, 2000.