An application of semi-infinite linear programming: approximation of a continuous function by a polynomial
Communications in Mathematics, Tome 12 (2004) no. 1, pp. 3-11
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 41A50, 65K05, 90C05, 90C34, 90C90
@article{COMIM_2004_12_1_a0,
     author = {Bartl, David},
     title = {An application of semi-infinite linear programming: approximation of a continuous function by a polynomial},
     journal = {Communications in Mathematics},
     pages = {3--11},
     year = {2004},
     volume = {12},
     number = {1},
     mrnumber = {2214667},
     zbl = {1235.90166},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2004_12_1_a0/}
}
TY  - JOUR
AU  - Bartl, David
TI  - An application of semi-infinite linear programming: approximation of a continuous function by a polynomial
JO  - Communications in Mathematics
PY  - 2004
SP  - 3
EP  - 11
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2004_12_1_a0/
LA  - en
ID  - COMIM_2004_12_1_a0
ER  - 
%0 Journal Article
%A Bartl, David
%T An application of semi-infinite linear programming: approximation of a continuous function by a polynomial
%J Communications in Mathematics
%D 2004
%P 3-11
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2004_12_1_a0/
%G en
%F COMIM_2004_12_1_a0
Bartl, David. An application of semi-infinite linear programming: approximation of a continuous function by a polynomial. Communications in Mathematics, Tome 12 (2004) no. 1, pp. 3-11. http://geodesic.mathdoc.fr/item/COMIM_2004_12_1_a0/

[1] Duffin R. J.: Infinite Programs. In Linear Inequalities and Related Systems. Ed. H. W. KUHN, A. W. Tucker. Princeton: Princeton Univ. Press, 1956, pp. 157-170. (Annals of Mathematics Studies; no. 38.) | MR | Zbl

[2] HAAR A.: Über lineare Ungleichungen. Acta Sci. Math., 1924, vol. 2, pp. 1-14.

[3] FAN K.: On Systems of Linear Inequalities. In Linear Inequalities and Related Systems. Ed. H. W. Kuhn, A. W. Tucker. Princeton: Princeton Univ. Press, 1956, pp. 99-156. (Annals of Mathematics Studies; no. 38.) | MR | Zbl

[4] Fan K., Glicksberg I., Hoffman A. J.: Systems of Inequalities Involving Convex Functions. Proceedings of the American Mathematical Society, June 1957, vol. 8, pp. 617-622. | MR | Zbl

[5] Farkas J.: Theorie der einfachen Ungleichungen. Journal für die reine und angewandte Mathematik, 1902, vol. 124, pp. 1-27.

[6] Grygarová L.: Úvod do lineárního programování. [An Introduction to Linear Programming, in Czech.] Praha: SPN, 1975.

[7] Craven B. D., Koliha J. J.: Generalizations of Farkas' Theorem. SIAM Journal on Mathematical Analysis, November 1977, vol. 8, no. 6, pp. 983-997. | DOI | MR | Zbl

[8] Lukeš J.: Zápisky z funkcionální analýzy. [Manuscripts on Functional Analysis, in Czech]. 1. vydání. [1st edidion.] Praha: Karolinum, 1998. 2. vydání. [2nd edidion.] Praha: Karolinum, 2002.

[9] Prékopa A.: On the Development of Optimization Theory. American Mathematical Monthly, August-September 1980, vol. 87, pp. 527-542. | DOI | MR

[10] Weyl H.: Elementare Theorie der konvexen Polyeder. Commentarii Mathematici Helvetici, 1935, vol. 7, pp. 290-306. English translation: The elementary theory of convex polyhedra. In Contributions to the Theory of Games. Volume I. Ed. H. W. Kuhn, A. W. Tucker. Princeton: Princeton Univ. Press, 1950, pp. 3-18. (Annals of Mathematics Studies; no. 24.) | Zbl

[11] Problem no. A.318. KöMaL, April 2003, vol. 53, no. 4, p. 255.