@article{COMIM_2003_11_1_a4,
author = {K\v{r}{\'\i}\v{z}ek, Michal and Somer, Lawrence},
title = {17 necessary and sufficient conditions for the primality of {Fermat} numbers},
journal = {Communications in Mathematics},
pages = {73--79},
year = {2003},
volume = {11},
number = {1},
mrnumber = {2037310},
zbl = {1227.11029},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2003_11_1_a4/}
}
TY - JOUR AU - Křížek, Michal AU - Somer, Lawrence TI - 17 necessary and sufficient conditions for the primality of Fermat numbers JO - Communications in Mathematics PY - 2003 SP - 73 EP - 79 VL - 11 IS - 1 UR - http://geodesic.mathdoc.fr/item/COMIM_2003_11_1_a4/ LA - en ID - COMIM_2003_11_1_a4 ER -
Křížek, Michal; Somer, Lawrence. 17 necessary and sufficient conditions for the primality of Fermat numbers. Communications in Mathematics, Tome 11 (2003) no. 1, pp. 73-79. http://geodesic.mathdoc.fr/item/COMIM_2003_11_1_a4/
[1] Btermann K.-R.: Thomas Clausen, Mathematiker und Astronom. J. Reine Angew. Math. 216, 1964, 159-198. | MR
[2] Crandall R. E., Mayer E., Papadopoulos J.: The twenty-fourth Fermat number is composite. Math. Comp., accepted, 1999, 1-21.
[3] Gauss C. P.: Disquisitiones arithmeticae. Springer, Berlin 1986. | MR | Zbl
[4] Inkeri K.: Tests for primality. Ann. Acad. Sci. Fenn. Ser. A I No. 279 1960, 1-19. | MR | Zbl
[5] Jones R,, Pearce J.: A postmodern view of fractions and the reciprocals of Fermat primes. Math. Mag. 73, 2000, 83-97. | DOI | MR
[6] Křížek M., Chleboun J.: A note on factorization of the Fermat numbers and their factors of the form $3h2^n + 1$. Math. Bohem. 119, 1994, 437-445. | MR
[7] Křížek M., Luca F., Somer L.: 17 lectures on the Fermat numbers. From number theory to geometry. Springer-Verlag, New York 2001. | MR
[8] Křížek M., Somer L.: A necessary and sufficient condition for the primality of Fermat numbers. Math. Bohem. 126, 2001, 541-549. | MR
[9] Luca F.: Fermat numbers and Heron triangles with prime power sides. Amer. Math. Monthly, accepted in 2000.
[10] Lucas E.: Theoremes d'arithmétique. Atti della Reale Accademia delle Scienze di Torino 13, 1878, 271-284.
[11] Mcintosh R.: A necessary and sufficient condition for the primality of Fermat numbers. Amer. Math. Monthly 90, 1983, 98-99. | DOI | MR | Zbl
[12] Morehead J. C.: Note on Fermat's numbers. Bull. Amer. Math. Soc. 11, 1905, 543-545. | DOI | MR
[13] Pepin P.: Sur la formule $2^{2^n} + 1$. C. R. Acad. Sci. 85, 1877, 329-331.
[14] Somer L., Křížek M.: On a connection of number theory with graph theory. Czechoslovak Math. J. (submitted) | MR
[15] Szalay L.: A discrete iteration in number theory. (Hungarian), BDTF Tud, Kozi. VIII. Termeszettudomanyok 3., Szombathely, 1992, 71-91. | Zbl
[16] Vasilenko O. N.: On some properties of Fermat numbers. (Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh., no. 5 1998, 56-58. | MR | Zbl
[17] Wantzel P. L.: Recherches sur les moyens de reconnaitre si un Probleme de Geometrie peut se resoudre avec la regie et le compas. J. Math. 2, 1837, 366-372.