$nX$-complementary generations of the Harada-Norton group $HN$
Communications in Mathematics, Tome 11 (2003) no. 1, pp. 3-9 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 20D08, 20F05
@article{COMIM_2003_11_1_a0,
     author = {Ashrafi, Ali Reza},
     title = {$nX$-complementary generations of the {Harada-Norton} group $HN$},
     journal = {Communications in Mathematics},
     pages = {3--9},
     year = {2003},
     volume = {11},
     number = {1},
     mrnumber = {2037306},
     zbl = {1110.20300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2003_11_1_a0/}
}
TY  - JOUR
AU  - Ashrafi, Ali Reza
TI  - $nX$-complementary generations of the Harada-Norton group $HN$
JO  - Communications in Mathematics
PY  - 2003
SP  - 3
EP  - 9
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2003_11_1_a0/
LA  - en
ID  - COMIM_2003_11_1_a0
ER  - 
%0 Journal Article
%A Ashrafi, Ali Reza
%T $nX$-complementary generations of the Harada-Norton group $HN$
%J Communications in Mathematics
%D 2003
%P 3-9
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2003_11_1_a0/
%G en
%F COMIM_2003_11_1_a0
Ashrafi, Ali Reza. $nX$-complementary generations of the Harada-Norton group $HN$. Communications in Mathematics, Tome 11 (2003) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/COMIM_2003_11_1_a0/

[1] M. Aschbacher: Sporadic group. Cambridge University Press, U.K., 1997.

[2] A. R. Ashrafi: Generating Pairs for the Thompson Group Th. to be submitted.

[3] A. R. Ashrafi: Generating Pairs for the Held Gгoup He. to appear in Ј. Appl. Math. & Computing, 2002. | MR

[4] A. R. Ashrafi, A. Iranmanesh: nX-Complementary Generations of the Rudvalis Group Ru. to be submitted. | Zbl

[5] M. D. E. Conder: Sorne results on quotients of triangle groups. Bull. Austral. Math. Soc. 30 (1984), 73-90. | DOI | MR

[6] M. D. E. Conder R. A. Wilson, A. Ј. Woider: The symmetric genus of sporadìc groups. Proc. Amer. Math. Soc. 116 (1992), 653-663. | DOI | MR

[7] Ј. H. Conway R. T. Curtis S. P. Norton R. A. Parker, R. A. Wilson: Atlas of Finite Groups. Oxford Univ. Press (Clarendon), Oxford, 1985. | MR

[8] M. R. Darafsheh, A. R. Ashrafi: $(2,p,g)$-Generation of the Conway group $Co_1$. Kumamoto J. Math., 13 (2000), 1-20. | MR

[9] M. R. Darafsheh, A. R. Ashrafi: Generatin Pairs for the Sporadic Group Ru. to be submitted.

[10] M. R. Darafsheh A. R. Ashrafi, G. A. Moghani: $(p, q, r)$-Generations of the Conway group $Co_1$, for odd p. Kumamoto J. Math., 14 (2001), 1-20. | MR

[11] M. R. Darafsheh A. R. Ashrafi, G. A. Moghani: (p, 9,r)-Generations and nX-Complementary Generations of the Sporadic Group Ly. to appear in Kumamoto J. Math., 2002.

[12] M. R. Darafsheh A. R. Ashrafi, G. A. Moghani: (p, q, r)-Generations of the Sporadic group O' N. to appear in LMS lecture note serries. | MR

[13] M. R. Darafsheh G. A. Moghani, A. R. Ashrafi: nX-Complementary Generations of the Conway Group $Co_1$. to be submitted.

[14] M. R. Darafsheh A. R. Ashrafi, G. A. Moghani: (p, q, r)-Generations of the Sporadic Group O'N. to appear in Southeat Asian Bull, of Math., 2003.

[15] M. R. Darafsheh, G. A. Moghani: nX-complementary Generations of the Sporadic Group He. To appear in Italian J. Pure and Appl. Math. | MR | Zbl

[16] S. Ganief, J. Moori: $(p, g,r)$-Generations of the smallest Conway group $Co_3$. J. Algebra 188 (1997), 516-530. | DOI | MR

[17] S. Ganief, J. Moori: Generating pairs for the Conway groups $Co_2$ and $Co_3$. J. Group Theory 1 (1998), 237-256. | MR | Zbl

[18] S. Ganief, J. Moori: 2-Generations of the Forth Janko Group $J_4$. J. Algebra 212 (1999), 305-322. | DOI | MR

[19] S. Ganief, J. Moori: (p, q, r)-Generations and nX-complementary generations of the sporadic groups HS and McL. J. Algebra 188 (1997), 531-546. | DOI | MR | Zbl

[20] J. Moori: $(p, q, r)$-Generations for the Janko groups $J\sb 1$ and $J\sb 2$. Nova J. Algebra and Geometry, Vol. 2, No. 3 (1993), 277-285. | MR | Zbl

[21] J. Moori: (2, 3,p)-Generations for the Fischer group $F\sb{22}$. Comm. Algebra 2(11) (1994), 4597-4610. | DOI | MR | Zbl

[22] M. Schonert, al.: GAP, Groups, Algorithms and Programming. Lehrstuhl De für Mathematik, RWTH, Aachen, 1992.

[23] A. J. Woldar: Representing $M\sb{11}$, $M\sb{12}$, $M\sb{22}$ and $M\sb{23}$ on surfaces of least genus. Comm. Algebra 18 (1990), 15-86. | MR | Zbl

[24] A. J. Woldar: Sporadic simple groups which are Hurwitz. J. Algebra 144(1991), 443-450. | MR | Zbl

[25] A. J. Woldar: 3/2-Generation of the Sporadic, simple groups. Comm. Algebra 22 (2) (1994), 675-685. | DOI | MR | Zbl

[26] A. J. Woldar: On Hurwitz generation and genus actions of sporadic groups. Illinois Math. J. (3) 33 (1989), 416-437. | MR | Zbl