Non-monogenity of multiquadratic number fields
Communications in Mathematics, Tome 10 (2002) no. 1, pp. 85-93
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 11D57, 11R04, 11R21
@article{COMIM_2002_10_1_a8,
     author = {Nyul, G\'abor},
     title = {Non-monogenity of multiquadratic number fields},
     journal = {Communications in Mathematics},
     pages = {85--93},
     year = {2002},
     volume = {10},
     number = {1},
     mrnumber = {1943027},
     zbl = {1058.11023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a8/}
}
TY  - JOUR
AU  - Nyul, Gábor
TI  - Non-monogenity of multiquadratic number fields
JO  - Communications in Mathematics
PY  - 2002
SP  - 85
EP  - 93
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a8/
LA  - en
ID  - COMIM_2002_10_1_a8
ER  - 
%0 Journal Article
%A Nyul, Gábor
%T Non-monogenity of multiquadratic number fields
%J Communications in Mathematics
%D 2002
%P 85-93
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a8/
%G en
%F COMIM_2002_10_1_a8
Nyul, Gábor. Non-monogenity of multiquadratic number fields. Communications in Mathematics, Tome 10 (2002) no. 1, pp. 85-93. http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a8/

[1] I. Gaál: Diophantine equations and power integral bases. Birkhauser Boston, 2002. | MR

[2] I. Gaál A. Pethő, M. Pohst: On the resolution of index form equations in biquadratic number fields, III. The bicyclic biquadratic case. J. Number Theory, 53 (1995), 100-114. | DOI | MR

[3] M. N. Gras, F. Tanoe: Corps biquadratiques monogénes. Manuscripta Math., 86 (1995), 63-79. | DOI | MR | Zbl

[4] T. Nakahara: On the indices and integral bases of non-cyclic but abelian biquadratic fields. Archiv. der Math., 41 (1983), 504-508. | DOI | MR | Zbl

[5] W. Narkiewicz: Elementary and Analytic Theory of Algebraic Numbers. Second Edition, Springer Verlag, 1990. | MR | Zbl

[6] G. Nyul: Power integral bases in totally complex biquadratic number fìelds. Acta Acad. Paed. Agriensis, Sectio Mathematicae, 28 (2001), 79-86. | MR | Zbl

[7] B. Schmal: Diskriminanten, Z-Ganzheitsbasen und reiative Ganzheitsbasen bei multiquadratischen Zahlkörpern. Arch. Math., 52 (1989), 245-257. | DOI | MR

[8] K. S. Williams: Integers of biquadratic fields. Canad. Math. Bull., 13 (1970), 519 526. | DOI | MR | Zbl