@article{COMIM_2002_10_1_a8,
author = {Nyul, G\'abor},
title = {Non-monogenity of multiquadratic number fields},
journal = {Communications in Mathematics},
pages = {85--93},
year = {2002},
volume = {10},
number = {1},
mrnumber = {1943027},
zbl = {1058.11023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a8/}
}
Nyul, Gábor. Non-monogenity of multiquadratic number fields. Communications in Mathematics, Tome 10 (2002) no. 1, pp. 85-93. http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a8/
[1] I. Gaál: Diophantine equations and power integral bases. Birkhauser Boston, 2002. | MR
[2] I. Gaál A. Pethő, M. Pohst: On the resolution of index form equations in biquadratic number fields, III. The bicyclic biquadratic case. J. Number Theory, 53 (1995), 100-114. | DOI | MR
[3] M. N. Gras, F. Tanoe: Corps biquadratiques monogénes. Manuscripta Math., 86 (1995), 63-79. | DOI | MR | Zbl
[4] T. Nakahara: On the indices and integral bases of non-cyclic but abelian biquadratic fields. Archiv. der Math., 41 (1983), 504-508. | DOI | MR | Zbl
[5] W. Narkiewicz: Elementary and Analytic Theory of Algebraic Numbers. Second Edition, Springer Verlag, 1990. | MR | Zbl
[6] G. Nyul: Power integral bases in totally complex biquadratic number fìelds. Acta Acad. Paed. Agriensis, Sectio Mathematicae, 28 (2001), 79-86. | MR | Zbl
[7] B. Schmal: Diskriminanten, Z-Ganzheitsbasen und reiative Ganzheitsbasen bei multiquadratischen Zahlkörpern. Arch. Math., 52 (1989), 245-257. | DOI | MR
[8] K. S. Williams: Integers of biquadratic fields. Canad. Math. Bull., 13 (1970), 519 526. | DOI | MR | Zbl