Formulae for the relative class number of an imaginary abelian field in the form of a product of determinants
Communications in Mathematics, Tome 10 (2002) no. 1, pp. 79-83 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 11R20, 11R29
@article{COMIM_2002_10_1_a7,
     author = {Ku\v{c}era, Radan},
     title = {Formulae for the relative class number of an imaginary abelian field in the form of a product of determinants},
     journal = {Communications in Mathematics},
     pages = {79--83},
     year = {2002},
     volume = {10},
     number = {1},
     mrnumber = {1943026},
     zbl = {1056.11067},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a7/}
}
TY  - JOUR
AU  - Kučera, Radan
TI  - Formulae for the relative class number of an imaginary abelian field in the form of a product of determinants
JO  - Communications in Mathematics
PY  - 2002
SP  - 79
EP  - 83
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a7/
LA  - en
ID  - COMIM_2002_10_1_a7
ER  - 
%0 Journal Article
%A Kučera, Radan
%T Formulae for the relative class number of an imaginary abelian field in the form of a product of determinants
%J Communications in Mathematics
%D 2002
%P 79-83
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a7/
%G en
%F COMIM_2002_10_1_a7
Kučera, Radan. Formulae for the relative class number of an imaginary abelian field in the form of a product of determinants. Communications in Mathematics, Tome 10 (2002) no. 1, pp. 79-83. http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a7/

[H] M. Hirabayashi: A generalization of Maillet and Demyanenko determinants for the cyclotomic $\Bbb Z_p$-extension. Abh. Math. Semin. Univ. Hamb. 71 (2001), 15-27. | DOI | MR

[K] R. Kučera: Formulae for the relative class number of an imaginary abelian field in the form of a determinant. Nagoya Math. J. 163 (2001), 167-191. | MR

[T] H. Tsumura: A note on the Demyanenko matrices related to the cyclotomic $\Bbb Z_p$-extension. Proc. Japan Acad., Ser. A 76 (2000), 99-103. | MR

[W] L. C. Washington: Introduction to cyclotomic fields. Springer-Verlag, New York, Heidelberg, Berlin, 1982, 1996. | MR | Zbl