Formulae for the relative class number of an imaginary abelian field in the form of a product of determinants
Communications in Mathematics, Tome 10 (2002) no. 1, pp. 79-83
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{COMIM_2002_10_1_a7,
author = {Ku\v{c}era, Radan},
title = {Formulae for the relative class number of an imaginary abelian field in the form of a product of determinants},
journal = {Communications in Mathematics},
pages = {79--83},
year = {2002},
volume = {10},
number = {1},
mrnumber = {1943026},
zbl = {1056.11067},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a7/}
}
TY - JOUR AU - Kučera, Radan TI - Formulae for the relative class number of an imaginary abelian field in the form of a product of determinants JO - Communications in Mathematics PY - 2002 SP - 79 EP - 83 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a7/ LA - en ID - COMIM_2002_10_1_a7 ER -
Kučera, Radan. Formulae for the relative class number of an imaginary abelian field in the form of a product of determinants. Communications in Mathematics, Tome 10 (2002) no. 1, pp. 79-83. http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a7/
[H] M. Hirabayashi: A generalization of Maillet and Demyanenko determinants for the cyclotomic $\Bbb Z_p$-extension. Abh. Math. Semin. Univ. Hamb. 71 (2001), 15-27. | DOI | MR
[K] R. Kučera: Formulae for the relative class number of an imaginary abelian field in the form of a determinant. Nagoya Math. J. 163 (2001), 167-191. | MR
[T] H. Tsumura: A note on the Demyanenko matrices related to the cyclotomic $\Bbb Z_p$-extension. Proc. Japan Acad., Ser. A 76 (2000), 99-103. | MR
[W] L. C. Washington: Introduction to cyclotomic fields. Springer-Verlag, New York, Heidelberg, Berlin, 1982, 1996. | MR | Zbl