@article{COMIM_2002_10_1_a6,
author = {Kovalevskaya, E. I.},
title = {$p$-adic variant of the convergence {Khintchine} theorem for curves over $\Bbb Z_p$},
journal = {Communications in Mathematics},
pages = {71--78},
year = {2002},
volume = {10},
number = {1},
mrnumber = {1943025},
zbl = {1069.11027},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a6/}
}
Kovalevskaya, E. I. $p$-adic variant of the convergence Khintchine theorem for curves over $\Bbb Z_p$. Communications in Mathematics, Tome 10 (2002) no. 1, pp. 71-78. http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a6/
[1] Khintchine A.: Einige Satze uber Kettenbruche mit Anwendungen auf die Theorie der Diophantischen Approximationen. Math. Ann. 92 (1924), 115-125. | DOI | MR
[2] Mahler K.: Über Transzendente p-adische Zahlen. Compozitio Mathematica. 2 (1935), 259-275. | MR | Zbl
[3] Adams W. W.: Transcendental numbers in the p-adic domain. Amer. J. Math. 88 (1966), 279-308. | DOI | MR | Zbl
[4] Mahler K.: p-adic numbers and their functions. Cambridge, 1981. | MR | Zbl
[5] Beresnevich V., Kovalevskaya E.: A full analogue of the Khintchine theorem for planar curves in $Z_p$. Preprint, Institute of Math. NAS Belarus. 2 (556) Minsk, 2000.
[6] Bernik V., Dodson M.: Metric Diophantine approximation on manifolds. Cambridge Tracts in Math. 137, Camb. Univ. Press, Cambridge, 1999. | MR | Zbl
[7] Melnichuk, Yu.: On the metric theory of the joint Diophantine approximation of p-adic numbers. Dokl. Akad. Nauk Ukrain. SSR, Ser. A.5 (1078), 394-397.
[8] Kovalevskaya E.: The convergence Khintchine theorem for polynomials and planar p-adic curves. Tatra Mt. Math. Publ. 20 (2000), 163-172. | MR | Zbl
[9] Silaeva N.: On analogue of Schmidt's theorem for curves in 3-dimensional p-adic spase. Vesti National Acad Sci. Belarus. Phys. and Math. Ser. 4 (2001), 35-41.
[10] Beresnevich V., Vasilyev D.: An analogue of the Khintchine theorem for curves in 3-dimensional complex space. Vesti National Acad Sci. Belarus. Phys. and Math. Ser. 1 (2001), 5-7.
[11] Bernik V., Kovalevskaya E.: Extremal property of some surfaces in n-dimensional Euclidean space. Mat. Zarnetki 15 N 2, 247-254. | Zbl