@article{COMIM_2002_10_1_a5,
author = {Kontolatou, A.},
title = {The {Cauchy} extension of an ordered abelian group realized by $r$-valuations},
journal = {Communications in Mathematics},
pages = {61--69},
year = {2002},
volume = {10},
number = {1},
mrnumber = {1943024},
zbl = {1035.22001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a5/}
}
Kontolatou, A. The Cauchy extension of an ordered abelian group realized by $r$-valuations. Communications in Mathematics, Tome 10 (2002) no. 1, pp. 61-69. http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a5/
[1] Arnautov V. S. Glavatsky, Mikhalev A.: Introduction to the theory of topological rings and modules. Marcel Dekker, Inc. 1996. | MR
[2] Aubert K. E.: Divisors of finite character. Annali di Matem. Pura ed appl. 33, (1983), 327-361. | MR | Zbl
[3] Borevich Z. I., Shafarevich I. R.: Number Theory. Academic Press, New York, 1966. | MR | Zbl
[4] Fuchs L.,: Partially Ordered Algebraic Systems. Pergamon Press, Oxford - London - New York - Paris, 1963. | MR | Zbl
[5] Halter-Koch F.: Ideal Systems. Marcel Dekker, Inc, 1998. | MR | Zbl
[6] Jaffaгd P.: Les Systèmes ď idéaux. Dunod, Paris, 1960.
[7] James I.: Topological and Uniform Spaces. Springer - Verlag, Beгlin, 1987. | MR | Zbl
[8] Močkoř J., Kontolatou A.: Quasi-divisors Theory of Partly Ordered Groups. Grazer Math. Ber. 318, (1992), 81-98. | MR
[9] Močkoř J., Kontolatou A.: Groups with Quasi-divisors Theory. Comment. Math. Univ. Sanc. Pauli, 42, (1993), 23-36. | MR
[10] Močkoř J.: Topological characterization of ordered groups with quasi-divisor theory. to appear in Czech J. Math. | MR
[11] Skula L.: Divisorentheorie einer Halbgrouppe. Math. Z., 114, (1970), 113-120. | MR