Computing all elements of given index in sextic fields with a cubic subfield
Communications in Mathematics, Tome 10 (2002) no. 1, pp. 49-59 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 11D57, 11J86, 11R21, 11Y40, 11Y50
@article{COMIM_2002_10_1_a4,
     author = {J\'ar\'asi, Istv\'an},
     title = {Computing all elements of given index in sextic fields with a cubic subfield},
     journal = {Communications in Mathematics},
     pages = {49--59},
     year = {2002},
     volume = {10},
     number = {1},
     mrnumber = {1943023},
     zbl = {1081.11022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a4/}
}
TY  - JOUR
AU  - Járási, István
TI  - Computing all elements of given index in sextic fields with a cubic subfield
JO  - Communications in Mathematics
PY  - 2002
SP  - 49
EP  - 59
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a4/
LA  - en
ID  - COMIM_2002_10_1_a4
ER  - 
%0 Journal Article
%A Járási, István
%T Computing all elements of given index in sextic fields with a cubic subfield
%J Communications in Mathematics
%D 2002
%P 49-59
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a4/
%G en
%F COMIM_2002_10_1_a4
Járási, István. Computing all elements of given index in sextic fields with a cubic subfield. Communications in Mathematics, Tome 10 (2002) no. 1, pp. 49-59. http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a4/

[1] A. Baker, G. Wüstholz: Logarithmic forms and group varieties. J. Reine Angew. Math., 442 (1993), 19-62. | MR

[2] M. Daberkow C. Fieker J. Klüners M. Pohst K. Roegner, K. Wildanger: KANT V4. J. Symbolic Comput., 24 (1997), 267-283. | DOI | MR

[3] U. Fincke, M. Pohst: Improved methods for calculating vectors of short lenght in a lattice, including a complexity analysis. Math. Comput., 44 (1985), 463-471. | DOI | MR

[4] I. Gaál: Computing elements of given index in totally complex cyclic sextic fields. J.Symbolic Comput., 20 (1995), 61-69. | DOI | MR

[5] I. Gaál: Computing all power integral bases in orders of totally real cycłic sextic number fìelds. Math. Comput., 65 (1996), 801-822. | DOI | MR

[6] I. Gaál: Diophantine equations and power integral bases. Birkhäuser, Boston, 2002. | MR

[7] I. Gaál, K. Györy: On the resolution of index form equations in quintic fìelds. Acta Arith., 89 (1999), 379-396. | MR

[8] I. Gaál, M. Pohst: On the resolution of index form equations in sextic fìelds with an imaginary quadratic subfìeld. J.Symbolic Comput., 22 (1996), 425-434. | DOI | MR

[9] I. Gaál, M. Pohst: On the resolution of relative Thue equations. Math. Comput., 71 (2002), 429-440. | MR

[10] K. Györy: Sur les polynomes a coefficients entiers et de discriminant donne, III. Publ. Math. (Debrecen), 23 (1976), 141-165. | MR

[11] K. Győry: Discriminant form and index form equations. In: Algebraic number theory and diophantine analysis, Proc. Conf. Graz 1998, Walter de Gruyter 2000, 191-214. | MR

[12] I. Járasi: Power integral bases in sextic fìelds with a cubic subfìeld. Acta Sci. Math. Szeged, to appear. | MR

[13] K. Wildanger: Über das Lösen von Einheiten- und Indexformgleichungen in algebraischen Zahlkörpern mit einer Anwendung auf die Bestimmung aller ganzen Punkte eгner Mordellschen Kurve. Dissertation, Technical University, Berlin, (1997).

[14] K. Wildanger: Über das Lösen von Einheiten- und Indexformgleichungen in algebraischen Zahlkörpern. J.Number Theory, 82 (2000), 188-224. | MR | Zbl