Quaternary quadratic forms and an associated lattice constant
Communications in Mathematics, Tome 10 (2002) no. 1, pp. 43-48 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 11H16, 11H50
@article{COMIM_2002_10_1_a3,
     author = {Jackson, Terence},
     title = {Quaternary quadratic forms and an associated lattice constant},
     journal = {Communications in Mathematics},
     pages = {43--48},
     year = {2002},
     volume = {10},
     number = {1},
     mrnumber = {1943022},
     zbl = {1051.11032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a3/}
}
TY  - JOUR
AU  - Jackson, Terence
TI  - Quaternary quadratic forms and an associated lattice constant
JO  - Communications in Mathematics
PY  - 2002
SP  - 43
EP  - 48
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a3/
LA  - en
ID  - COMIM_2002_10_1_a3
ER  - 
%0 Journal Article
%A Jackson, Terence
%T Quaternary quadratic forms and an associated lattice constant
%J Communications in Mathematics
%D 2002
%P 43-48
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a3/
%G en
%F COMIM_2002_10_1_a3
Jackson, Terence. Quaternary quadratic forms and an associated lattice constant. Communications in Mathematics, Tome 10 (2002) no. 1, pp. 43-48. http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a3/

[1] J. W. S. Cassels: An introduction to the geometry of numbers. Springer, 1971. | MR | Zbl

[2] S. G. Dani, G. A. Margulis, V: alues of quadratic forms at integral points: an elementary approach. Enseign. Math. (2) 36 (1990), 143-174. | MR

[3] T. H. Jackson: Small positive values of indefinite binary quadratic forms. J. London Math. Soc. 43 (1968) 730-738. | DOI | MR | Zbl

[4] T. H. Jackson: One-sided inequalities for ternary forms I. J. Number Theory 13 (1981), 376-397. | DOI | MR | Zbl

[5] T. H. Jackson: One-sided inequalities for ternary forms II. J. Number Theory 16 (1983), 333-342. | DOI | MR | Zbl

[6] T. H. Jackson: Small positive values of indefinite ternary forms. Mathematika - to appear. | MR | Zbl

[7] K. Mahler: A theorem of B. Segre. Duke Math. J. 12 (1945), 367-371. | DOI | MR | Zbl

[8] A. Oppenheim: Minima of indefinite quaternary quadratic forms. Ann. Math. 32 (1931), 271-298. | DOI | MR | Zbl

[9] A. Oppenheim: Values of quadratic forms I. Quart. J. Math. Oxford Ser. 2 4 (1953), 54-59. | DOI | MR | Zbl

[10] B. Segre: Lattice points in infinite domains and asymmetric Diophantine approximations. Duke Math. J. 12 (1945), 337-365. | MR | Zbl

[11] G. L. Watson: Integral Quadratic Forms. Cambridge University Press, 1960. | MR | Zbl

[12] R. T. Worley: Non-negative values of quadratic forms. J. Austral. Math. Soc. 12 (1971), 224- 238. | DOI | MR | Zbl