@article{COMIM_2002_10_1_a16,
author = {Yamazaki, Takao},
title = {Tate duality and ramification of division algebras},
journal = {Communications in Mathematics},
pages = {153--160},
year = {2002},
volume = {10},
number = {1},
mrnumber = {1943035},
zbl = {1025.11036},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a16/}
}
Yamazaki, Takao. Tate duality and ramification of division algebras. Communications in Mathematics, Tome 10 (2002) no. 1, pp. 153-160. http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a16/
[1] Coates J., Greenberg R.: Kummer theory for abelian varieties over local fields. Invent. Math. 124, 129-174 (1996). | DOI | MR | Zbl
[2] Hyodo O.: Wild ramification in the imperfect residue field case. Adv. Stud. Pure Math., 12, 287-314 (1987). | MR | Zbl
[3] Kato K.: A generalization of local class field theory by using K-groups. I. J. Fac. Sci. U. of Tokyo, Sec IA 26, 303-376 (1989). | MR
[4] Kato K.: Swan conductors for characters of degree one in the imperfect residue field case. Contemporary Math. 83, 101-131 (1989). | DOI | MR | Zbl
[5] McCallum W.: Tate duality and wild ramification. Math. Ann. 288, 553-558 (1990). | DOI | MR | Zbl
[6] Serre J.P.: Corps locaux. Hermann (1962). | MR | Zbl
[7] Tate J.: WC-groups over p-adic fields. Seminaire Bourbaki, 156 13p (1957). | MR
[8] Yamazaki T.: Reduced norm map of division algebras over complete discrete valuation fields of certain type. Comp. Math. 112, 127-145 (1998). | DOI | MR | Zbl
[9] Yamazaki T.: On Swan conductors for Brauer groups of curves over local fields. Proc. Amer. Math. Soc. 127, 1269-1274 (1999). | DOI | MR | Zbl
[10] Yamazaki T.: On Tate duality for Jacobian varieties. preprint (2001). | MR | Zbl