A note on polynomial cycles
Communications in Mathematics, Tome 10 (2002) no. 1, pp. 145-151
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 11C08, 11C20, 11R18
@article{COMIM_2002_10_1_a15,
     author = {Vavro\v{s}, Michal},
     title = {A note on polynomial cycles},
     journal = {Communications in Mathematics},
     pages = {145--151},
     year = {2002},
     volume = {10},
     number = {1},
     mrnumber = {1943034},
     zbl = {1053.11021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a15/}
}
TY  - JOUR
AU  - Vavroš, Michal
TI  - A note on polynomial cycles
JO  - Communications in Mathematics
PY  - 2002
SP  - 145
EP  - 151
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a15/
LA  - en
ID  - COMIM_2002_10_1_a15
ER  - 
%0 Journal Article
%A Vavroš, Michal
%T A note on polynomial cycles
%J Communications in Mathematics
%D 2002
%P 145-151
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a15/
%G en
%F COMIM_2002_10_1_a15
Vavroš, Michal. A note on polynomial cycles. Communications in Mathematics, Tome 10 (2002) no. 1, pp. 145-151. http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a15/

[1] Boduch J.: Polynomial cycles in rings of algebraic integer. (Polish) MA thesis Wroclaw University, 1990.

[2] Davis P. J.: Circulant Matrices. Wiley-Interscience publishers, John Wiley and sons, New York-Chichester -Brisbane -Toronto, 1979. | MR | Zbl

[3] Divišová Z.: On cycles of polynomials with integral rational coefficients. Mathematica Slovaca, (to appear 2002). | MR

[4] Halter-Koch F., Konečná P.: Polynomial cycles in finite extension fields. Mathematica Slovaca, (to appear 2002). | MR

[5] Kostra J.: A note on representation of cyclotomic fields. Acta Mathematica et Informatica Universitatis Ostraviensis 4, 29-35, 1996. | MR | Zbl

[6] Kostra J.: On orbits in ambiguons ideals. Acta Acad. Paed. Agriensis, Section Mathematical, (to appear 2002). | MR

[7] Narkiewicz W.: Polynomial Mappings. Lecture Notes in Mathematics, 1600, Springer-Verlag, Berlin, Heidelberg, 1995. | MR | Zbl

[8] Pomp M., Havelek R.: On representation of cyclotomic fields $\Bbb Q (\zeta_{pq}). Acta Mathematica et Informatica Universitatis Ostraviensis, 7, 71-78, 1999. | MR | Zbl