@article{COMIM_2002_10_1_a12,
author = {Selmane, Schehrazad},
title = {Quadratic extensions of quintic fields of signature $(3,1)$},
journal = {Communications in Mathematics},
pages = {117--123},
year = {2002},
volume = {10},
number = {1},
mrnumber = {1943031},
zbl = {1061.11055},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a12/}
}
Selmane, Schehrazad. Quadratic extensions of quintic fields of signature $(3,1)$. Communications in Mathematics, Tome 10 (2002) no. 1, pp. 117-123. http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a12/
[1] M. Daberkow C. Fieker J. Khüners M. Pohst K. Roegner, K. Wildanger: Kant V4. J. Symbolic Comp. 24 (1997), 267-283. | DOI | MR
[2] F. Diaz y Diaz M. Pohst, A. Schwaгtz: A table of quintic number fields of signature (3,1). Math. Comp. 56 (1991), 801-808. | DOI | MR
[3] J. Martinet: Methodes geometriques dans la recherche des petits discriminants. Sem. de Theorie des nombres de paris 1983/1984, Birkhauser Verlag, Bassel (1985) 147-179. | MR
[4] M. Pohst: On computing isomorphisms of equation orders. Math. Comp. 48(1987), 309-314. | DOI | MR | Zbl
[5] Sc. Selmane: Non-primitive number fields of degree eight and of signature (2,3), (4,2) and (6,1) with small discriminant. Math. Comp. 68 (1999), 333-344. | DOI | MR
[6] Sc. Selmane: Quadratic extensions of totally real quintic fields. Math. Comp. 70 (2001), 837-843. | DOI | MR | Zbl
[7] Sc. Selmane: Tenth degree number fields with quintic fields having one real place. Math. Comp. 70 (2001), 845-851. | DOI | MR | Zbl
[8] Sc. Selmane: Odlyzko-Poitou-Serre Lower Bounds for Discriminant for some Number Fields. Magreb Math. Rev. 8 (1999), 151-162. | MR