On Lucas pseudoprimes of the form $ax^2+bxy+cy^2$ in arithmetic progression $AX+B$ with a prescribed value of the Jacobi symbol
Communications in Mathematics, Tome 10 (2002) no. 1, pp. 103-109
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 11A07, 11A15, 11B39
@article{COMIM_2002_10_1_a10,
     author = {Rotkiewicz, A.},
     title = {On {Lucas} pseudoprimes of the form $ax^2+bxy+cy^2$ in arithmetic progression $AX+B$ with a prescribed value of the {Jacobi} symbol},
     journal = {Communications in Mathematics},
     pages = {103--109},
     year = {2002},
     volume = {10},
     number = {1},
     mrnumber = {1943029},
     zbl = {1028.11008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a10/}
}
TY  - JOUR
AU  - Rotkiewicz, A.
TI  - On Lucas pseudoprimes of the form $ax^2+bxy+cy^2$ in arithmetic progression $AX+B$ with a prescribed value of the Jacobi symbol
JO  - Communications in Mathematics
PY  - 2002
SP  - 103
EP  - 109
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a10/
LA  - en
ID  - COMIM_2002_10_1_a10
ER  - 
%0 Journal Article
%A Rotkiewicz, A.
%T On Lucas pseudoprimes of the form $ax^2+bxy+cy^2$ in arithmetic progression $AX+B$ with a prescribed value of the Jacobi symbol
%J Communications in Mathematics
%D 2002
%P 103-109
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a10/
%G en
%F COMIM_2002_10_1_a10
Rotkiewicz, A. On Lucas pseudoprimes of the form $ax^2+bxy+cy^2$ in arithmetic progression $AX+B$ with a prescribed value of the Jacobi symbol. Communications in Mathematics, Tome 10 (2002) no. 1, pp. 103-109. http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a10/

[1] BACHMANN P.: Zahlentheorie. 2, Die analytische Zahlentheorie. Tenbner, Leipzig, 1894.

[2] Baillie R., Wagstaff, Jr. S.: Lucas pseudoprimes. Math. Comp. 35 (1980), 1391-1417. | DOI | MR | Zbl

[3] Bilu Yu., Hanrot G., Vouter P. M.: Existence of primitive divisors of Lucas and Lehmer numbers. (with an appendix by Mignott M.), J. Reine Angew. Math. 539 (2001), 75-122. | MR

[4] Crandall R., Pomerance C.: Prince Numbers. A Computational Perspective, Springer-Verlag, New York, 2001. | MR

[5] Dickson L. E.: History of the Theory of Numbers, Vol. I. Chelsea Publishing Company, New York, 1952.

[6] Durst L. K.: Exceptional real Lehmer sequences. Pacific J. Math. 9 (1959), 437-441. | DOI | MR | Zbl

[7] Erdös P., Kiss P., Sárközy A.: Lower bound for the counting function. Math. Comp. 51 (1988), 315-323. | MR

[8] Lehmer D. H.: An extended theory of Lucas functions. Ann. of Math. (2) 31 (1930), 419-448. | DOI | MR

[9] Meyer A.: Ueber einen Satz von Dinchlet. J. reine angew. Math. 103 (1888), 98-117.

[10] Narkiewicz W.: The Development of Prime Number Theory: from Euclid to Hardy and Littlewood. Springer, 2000. | MR | Zbl

[11] Rotkiewicz A.: On the pseudoprimes of the form ax + b with respect to the sequence of Lehmer. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 20 (1972), 349-354. | MR | Zbl

[12] Rotkiewicz A.: On Euler Lehmer pseudoprimes and strong Lehmer pseudoprimes with parameters L,Q in arithmetic progression. Math. Comp. 39 (1982), 239-247. | MR

[13] Rotkoewicz A.: On strong pseudoprimes in the case of negative discriminant in arithmetic progressions. Acta Arith. 68 (1994), 145-151. | MR

[14] Rotkiewicz A.: On Lucas pseudoprimes of the form $ax\sp 2+bxy+cy\sp 2$. Applications of Fibonacci Numbers, Volume 6, Edited by G.E. Bergum, A.N. Philippou and A.F. Horadam, Kluwer Academic Publishers, Dordrecht, 1996, 409-421. | MR | Zbl

[15] Rotkiewicz A., A. Schinzel: Sur les nombres pseudopremiers de la forme $ax\sp 2+bxy+cy\sp 2$. C.R. Acad. Sci. Paris, 258 (1964), 3617-3620. | MR

[16] Rotkiewicz A., Schinzel A.: On Lucas pseudoprimes with a prescribed value of the Jacobi symbol. Bull. Polish Acad. Sci. Math. 48 (2000), 77-80. | MR | Zbl

[17] Schinzel A.: On primitive prime factors of $a^n - b^n$. Proc. Cambridge Philos. Soc. 58 (1962), 555-562. | MR

[18] Schnitzel A.: The intrinsic divisors of Lehmer numbers in the case of negative discriminant. Ark. Math. 4 (1962), 413-416. | DOI | MR

[19] Stewart C. L.: Primitive divisors of Lucas and Lehmer sequences. Transcendence Theory: Advances and Applications (A. Baker and D.W. Masser, eds.), Academic Press, New York, 1997, pp. 79-92. | MR

[20] Ward M.: The intrinsic divisor of Lehmer numbers. Ann. of Math. (2) 62 (1955), 230-236. | DOI | MR