@article{COMIM_2002_10_1_a10,
author = {Rotkiewicz, A.},
title = {On {Lucas} pseudoprimes of the form $ax^2+bxy+cy^2$ in arithmetic progression $AX+B$ with a prescribed value of the {Jacobi} symbol},
journal = {Communications in Mathematics},
pages = {103--109},
year = {2002},
volume = {10},
number = {1},
mrnumber = {1943029},
zbl = {1028.11008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a10/}
}
TY - JOUR AU - Rotkiewicz, A. TI - On Lucas pseudoprimes of the form $ax^2+bxy+cy^2$ in arithmetic progression $AX+B$ with a prescribed value of the Jacobi symbol JO - Communications in Mathematics PY - 2002 SP - 103 EP - 109 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a10/ LA - en ID - COMIM_2002_10_1_a10 ER -
%0 Journal Article %A Rotkiewicz, A. %T On Lucas pseudoprimes of the form $ax^2+bxy+cy^2$ in arithmetic progression $AX+B$ with a prescribed value of the Jacobi symbol %J Communications in Mathematics %D 2002 %P 103-109 %V 10 %N 1 %U http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a10/ %G en %F COMIM_2002_10_1_a10
Rotkiewicz, A. On Lucas pseudoprimes of the form $ax^2+bxy+cy^2$ in arithmetic progression $AX+B$ with a prescribed value of the Jacobi symbol. Communications in Mathematics, Tome 10 (2002) no. 1, pp. 103-109. http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a10/
[1] BACHMANN P.: Zahlentheorie. 2, Die analytische Zahlentheorie. Tenbner, Leipzig, 1894.
[2] Baillie R., Wagstaff, Jr. S.: Lucas pseudoprimes. Math. Comp. 35 (1980), 1391-1417. | DOI | MR | Zbl
[3] Bilu Yu., Hanrot G., Vouter P. M.: Existence of primitive divisors of Lucas and Lehmer numbers. (with an appendix by Mignott M.), J. Reine Angew. Math. 539 (2001), 75-122. | MR
[4] Crandall R., Pomerance C.: Prince Numbers. A Computational Perspective, Springer-Verlag, New York, 2001. | MR
[5] Dickson L. E.: History of the Theory of Numbers, Vol. I. Chelsea Publishing Company, New York, 1952.
[6] Durst L. K.: Exceptional real Lehmer sequences. Pacific J. Math. 9 (1959), 437-441. | DOI | MR | Zbl
[7] Erdös P., Kiss P., Sárközy A.: Lower bound for the counting function. Math. Comp. 51 (1988), 315-323. | MR
[8] Lehmer D. H.: An extended theory of Lucas functions. Ann. of Math. (2) 31 (1930), 419-448. | DOI | MR
[9] Meyer A.: Ueber einen Satz von Dinchlet. J. reine angew. Math. 103 (1888), 98-117.
[10] Narkiewicz W.: The Development of Prime Number Theory: from Euclid to Hardy and Littlewood. Springer, 2000. | MR | Zbl
[11] Rotkiewicz A.: On the pseudoprimes of the form ax + b with respect to the sequence of Lehmer. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 20 (1972), 349-354. | MR | Zbl
[12] Rotkiewicz A.: On Euler Lehmer pseudoprimes and strong Lehmer pseudoprimes with parameters L,Q in arithmetic progression. Math. Comp. 39 (1982), 239-247. | MR
[13] Rotkoewicz A.: On strong pseudoprimes in the case of negative discriminant in arithmetic progressions. Acta Arith. 68 (1994), 145-151. | MR
[14] Rotkiewicz A.: On Lucas pseudoprimes of the form $ax\sp 2+bxy+cy\sp 2$. Applications of Fibonacci Numbers, Volume 6, Edited by G.E. Bergum, A.N. Philippou and A.F. Horadam, Kluwer Academic Publishers, Dordrecht, 1996, 409-421. | MR | Zbl
[15] Rotkiewicz A., A. Schinzel: Sur les nombres pseudopremiers de la forme $ax\sp 2+bxy+cy\sp 2$. C.R. Acad. Sci. Paris, 258 (1964), 3617-3620. | MR
[16] Rotkiewicz A., Schinzel A.: On Lucas pseudoprimes with a prescribed value of the Jacobi symbol. Bull. Polish Acad. Sci. Math. 48 (2000), 77-80. | MR | Zbl
[17] Schinzel A.: On primitive prime factors of $a^n - b^n$. Proc. Cambridge Philos. Soc. 58 (1962), 555-562. | MR
[18] Schnitzel A.: The intrinsic divisors of Lehmer numbers in the case of negative discriminant. Ark. Math. 4 (1962), 413-416. | DOI | MR
[19] Stewart C. L.: Primitive divisors of Lucas and Lehmer sequences. Transcendence Theory: Advances and Applications (A. Baker and D.W. Masser, eds.), Academic Press, New York, 1997, pp. 79-92. | MR
[20] Ward M.: The intrinsic divisor of Lehmer numbers. Ann. of Math. (2) 62 (1955), 230-236. | DOI | MR