Class number parity of a compositum of five quadratic fields
Communications in Mathematics, Tome 10 (2002) no. 1, pp. 25-34
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 11R20, 11R27, 11R29
@article{COMIM_2002_10_1_a1,
     author = {Bulant, Michal},
     title = {Class number parity of a compositum of five quadratic fields},
     journal = {Communications in Mathematics},
     pages = {25--34},
     year = {2002},
     volume = {10},
     number = {1},
     mrnumber = {1943020},
     zbl = {1061.11063},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a1/}
}
TY  - JOUR
AU  - Bulant, Michal
TI  - Class number parity of a compositum of five quadratic fields
JO  - Communications in Mathematics
PY  - 2002
SP  - 25
EP  - 34
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a1/
LA  - en
ID  - COMIM_2002_10_1_a1
ER  - 
%0 Journal Article
%A Bulant, Michal
%T Class number parity of a compositum of five quadratic fields
%J Communications in Mathematics
%D 2002
%P 25-34
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a1/
%G en
%F COMIM_2002_10_1_a1
Bulant, Michal. Class number parity of a compositum of five quadratic fields. Communications in Mathematics, Tome 10 (2002) no. 1, pp. 25-34. http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a1/

[1] M. Bulant. : On the parity of the class number of the field $Q(\sqrt{p},\sqrt{q},\sqrt{r})$. J. Number Theory, 68(1):72-86, January 1998. | MR

[2] M. Bulant. : On the parity of the class number of the field $Q(\sqrt{p},\sqrt{q},\sqrt{r})$. Acta Mathematica et Informatica Universitatis Ostraviensis, 6:41-52, 1998. | MR

[3] R. Kučera. : On the parity of the class number of a biquadratic field. J. Number Theory, 52(1):43-52, May 1995. | MR | Zbl

[4] R. Kučera. : On the Stickelberger ideal and circulaг units of a compositum of quadratic fields. J. Number Theory, 56(1):139-166, January 1996. | MR

[5] L. C. Washington. : Introduction to Cyclotomic Fields. Number 83 in GTM. Springer, 2nd edition, 1997. | MR | Zbl