@article{COMIM_2002_10_1_a1,
author = {Bulant, Michal},
title = {Class number parity of a compositum of five quadratic fields},
journal = {Communications in Mathematics},
pages = {25--34},
year = {2002},
volume = {10},
number = {1},
mrnumber = {1943020},
zbl = {1061.11063},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a1/}
}
Bulant, Michal. Class number parity of a compositum of five quadratic fields. Communications in Mathematics, Tome 10 (2002) no. 1, pp. 25-34. http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a1/
[1] M. Bulant. : On the parity of the class number of the field $Q(\sqrt{p},\sqrt{q},\sqrt{r})$. J. Number Theory, 68(1):72-86, January 1998. | MR
[2] M. Bulant. : On the parity of the class number of the field $Q(\sqrt{p},\sqrt{q},\sqrt{r})$. Acta Mathematica et Informatica Universitatis Ostraviensis, 6:41-52, 1998. | MR
[3] R. Kučera. : On the parity of the class number of a biquadratic field. J. Number Theory, 52(1):43-52, May 1995. | MR | Zbl
[4] R. Kučera. : On the Stickelberger ideal and circulaг units of a compositum of quadratic fields. J. Number Theory, 56(1):139-166, January 1996. | MR
[5] L. C. Washington. : Introduction to Cyclotomic Fields. Number 83 in GTM. Springer, 2nd edition, 1997. | MR | Zbl