The class number one problem for the non-normal sextic CM-fields. Part 2
Communications in Mathematics, Tome 10 (2002) no. 1, pp. 3-23
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 11R21, 11R29, 11R42, 11Y40
@article{COMIM_2002_10_1_a0,
     author = {Boutteaux, G\'erard and Louboutin, St\'ephane},
     title = {The class number one problem for the non-normal sextic {CM-fields.} {Part} 2},
     journal = {Communications in Mathematics},
     pages = {3--23},
     year = {2002},
     volume = {10},
     number = {1},
     mrnumber = {1943019},
     zbl = {1042.11070},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a0/}
}
TY  - JOUR
AU  - Boutteaux, Gérard
AU  - Louboutin, Stéphane
TI  - The class number one problem for the non-normal sextic CM-fields. Part 2
JO  - Communications in Mathematics
PY  - 2002
SP  - 3
EP  - 23
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a0/
LA  - en
ID  - COMIM_2002_10_1_a0
ER  - 
%0 Journal Article
%A Boutteaux, Gérard
%A Louboutin, Stéphane
%T The class number one problem for the non-normal sextic CM-fields. Part 2
%J Communications in Mathematics
%D 2002
%P 3-23
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a0/
%G en
%F COMIM_2002_10_1_a0
Boutteaux, Gérard; Louboutin, Stéphane. The class number one problem for the non-normal sextic CM-fields. Part 2. Communications in Mathematics, Tome 10 (2002) no. 1, pp. 3-23. http://geodesic.mathdoc.fr/item/COMIM_2002_10_1_a0/

[BL] G. Boutteaux, S. Louboutin. : The ciass number one problem for some non-normal sextic CM-fields. Analytic number theory (Beijing/Kjoto, 1999), 27-37, Dev. Math. 6, Kluwer Acad. Publ., Dordrecht, 2002. | DOI | MR

[Bou] G. Boutteaux. : Détermination des corps à multiplication complexe, sextiques, non galoisiens et principaux. PҺD Thesis, in preparation.

[Lan] S. Lang. : Algebraic Number Theory. Spгinger-Verlag, Grad. Texts Math. 110, Second Edition. | MR | Zbl

[LLO] F. Lemmermeyer S. Louboutin, R. Okazaki. : The class number one problem for some non-abelian normal CM-fields of degree 24. Journal de Théorie des Nombres de Bordeaux 11 (1999), 387-406. | DOI | MR

[LO] S. Louboutin, R. Okazaki. : Determination of all non-normal quartic CM-fieids and of all non-abelian normal octic CM-fields with class number one. Acta Arith. 67 (1994), 47-62. | MR

[LOO] S. Louboutin R. Okazaki, M. Olivier. : The class number one probiem for some non-abeiian normal CM-fields. Trans. Amer. Math. Soc. 349 (1997), 3657-3678. | DOI | MR

[Loul] S. Louboutin. : On the class number one problem for nonnormal quartic CM-fields. Tôhoku Math. J. 46 (1994), 1-12. | DOI | MR

[Lou2] S. Louboutin. : Lower bounds for relative class numbers of CM-fields. Proc. Amer. Math. Soc. 120 (1994), 425-434. | DOI | MR | Zbl

[LouЗ] S. Louboutin. : Determination of all quaternion octic CM-fields with class number 2. J. London. Math. Soc. (2) 54 (1996), 227-238. | DOI | MR | Zbl

[Lou4] S. Louboutin. : Computation of relative class numbers of CM-fields. Math. Comp. 66 (1997), 173-184. | DOI | MR | Zbl

[Lou5] S. Louboutin. : Upper bounds on $|L(1,\chi)|$ and applications. Canad. J. Math. 50 (1999), 794-815. | DOI | MR | Zbl

[Lou6] S. Louboutin. : Explicit bounds for residues of Dedekind zeta functions, values of L-functions at s = 1, and relative class numbers. J. Number Theory 85 (2000), 263-282. | DOI | MR | Zbl

[Lou7] S. Louboutin. : Explicit upper bounds for residues of Dedekind zeta functions and values of L-functions at s = 1, and explicit lower bounds for relative class numbers of CM-fields. Canad. J. Math. 53 (2001), 1194-1222. | DOI | MR | Zbl

[LYK] S. Louboutin Y.-S. Yang, S.-H. Kwon. : The non-normal quartic CM-fields and the dihedral octic CM-fields with ideal class groups of exponent $\leq 2$. Preprint (2000).

[Mar] J. Martinet. : Sur ľarithmétique des extensions à groupe de Galois diédral ďordre 2p. Ann. Inst. Fourier (GrenoЫe) 19 (1969), 1-80. | DOI | MR

[Oka] R. Okazaki. : Non-normal class number one problem and the least prime power-гesidue. In Number Theory and Applications (series: Develoments in Mathematics Volume 2), edited by S. Kanemitsu and K. Györy from Kluwer Academic Publishers (1999) pp. 273-289. | MR

[Sta] H. M. Stark. : Some effective cases of the Brauer-Siegel theorem. Invent. Math. 23 (1974), 135-152. | DOI | MR | Zbl

[Wa] L. C. Washington. : Introduction to Cyclotomic Fields. Grad. Texts Math. 83, Springer-Verlag. | MR | Zbl