Fuzzy functions in fuzzy logic with fuzzy equality
Communications in Mathematics, Tome 9 (2001) no. 1, pp. 59-66 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 03B52
@article{COMIM_2001_9_1_a7,
     author = {Nov\'ak, Vil\'em},
     title = {Fuzzy functions in fuzzy logic with fuzzy equality},
     journal = {Communications in Mathematics},
     pages = {59--66},
     year = {2001},
     volume = {9},
     number = {1},
     mrnumber = {1879642},
     zbl = {1027.03024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2001_9_1_a7/}
}
TY  - JOUR
AU  - Novák, Vilém
TI  - Fuzzy functions in fuzzy logic with fuzzy equality
JO  - Communications in Mathematics
PY  - 2001
SP  - 59
EP  - 66
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2001_9_1_a7/
LA  - en
ID  - COMIM_2001_9_1_a7
ER  - 
%0 Journal Article
%A Novák, Vilém
%T Fuzzy functions in fuzzy logic with fuzzy equality
%J Communications in Mathematics
%D 2001
%P 59-66
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2001_9_1_a7/
%G en
%F COMIM_2001_9_1_a7
Novák, Vilém. Fuzzy functions in fuzzy logic with fuzzy equality. Communications in Mathematics, Tome 9 (2001) no. 1, pp. 59-66. http://geodesic.mathdoc.fr/item/COMIM_2001_9_1_a7/

[1] Hájek P.: Metamathematics of fuzzy logic. Kluwer, Dordrecht 1998. | MR

[2] Klawonn F.: Fuzzy Points, Fuzzy Relations and Fuzzy Functions. In: Novák, V. and I. Perfilieva (eds): Discovering the World with Fuzzy Logic. Springer, Heidelberg 2000, 431-453. | MR | Zbl

[3] Klawonn F., R. Kruse: Equality Relations as a Basis for Fuzzy Control. Fuzzy Sets and Systems 54 (1993), 147-156. | MR | Zbl

[4] Novák V.: On functions in fuzzy logic with evaluated syntax. Neural Network World, 10 (2000), 869-875.

[5] Novák V.: On fuzzy equality and approximation in fuzzy logic. Submitted to Soft Computing.

[6] Novák V., Perfilieva I., J. Močkoř: Mathematical Principles of Fuzzy Logic. Kluwer, Boston 1999. | MR

[7] Perfilieva I.: Normal Forms for Fuzzy Logic Relations and the Best Approximation Property. Proc. Joint. Conf. EUSFLAT-ESTYLF'99, Palma de Mallorca 1999, 39-42.

[8] Perfilieva I.: Normal Forms for Fuzzy Logic Functions and Their Approximation Ability. Fuzzy Sets and Systems 124 (2001), 371-384. | MR | Zbl

[9] Perfilieva I.: Fuzzy Relations, Functions, and Their Representation by Formulas. Neural Network World, 10 (2000), 877-890.

[10] Shoenfield J. R.: Mathematical Logic. New York: Addison-Wesley 1967. | MR | Zbl