Big set of measure zero
Communications in Mathematics, Tome 9 (2001) no. 1, pp. 53-57 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 28A05
@article{COMIM_2001_9_1_a6,
     author = {Mi\v{s}{\'\i}k, Ladislav},
     title = {Big set of measure zero},
     journal = {Communications in Mathematics},
     pages = {53--57},
     year = {2001},
     volume = {9},
     number = {1},
     mrnumber = {1879641},
     zbl = {1031.28001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2001_9_1_a6/}
}
TY  - JOUR
AU  - Mišík, Ladislav
TI  - Big set of measure zero
JO  - Communications in Mathematics
PY  - 2001
SP  - 53
EP  - 57
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2001_9_1_a6/
LA  - en
ID  - COMIM_2001_9_1_a6
ER  - 
%0 Journal Article
%A Mišík, Ladislav
%T Big set of measure zero
%J Communications in Mathematics
%D 2001
%P 53-57
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2001_9_1_a6/
%G en
%F COMIM_2001_9_1_a6
Mišík, Ladislav. Big set of measure zero. Communications in Mathematics, Tome 9 (2001) no. 1, pp. 53-57. http://geodesic.mathdoc.fr/item/COMIM_2001_9_1_a6/

[B] Besicovitch A. S.: Sets of fractional dimensions IV: On rational approximations to real numbers. J. London Math. Soc 9 (1934), 126 - 131. | DOI

[G] Giitig R.: On Mahler's function $\Theta$. Michigan Math. J. 10 (1963), 161 - 179. | DOI | MR

[J] Jarník V.: Zur metrichen Theorie den diophantischen Approximationen. Recueil Math. Moscow. 36 (1929), 371 - 382.

[M] Mišík L .: How large can a set of measure zero be?. submitted.

[Z-S] Zvára K., Štěpán J.: Pravděpodobnost a matematická statistika. Matfyz- press, Universita Karlova (1987).