Big set of measure zero
Communications in Mathematics, Tome 9 (2001) no. 1, pp. 53-57
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{COMIM_2001_9_1_a6,
author = {Mi\v{s}{\'\i}k, Ladislav},
title = {Big set of measure zero},
journal = {Communications in Mathematics},
pages = {53--57},
year = {2001},
volume = {9},
number = {1},
mrnumber = {1879641},
zbl = {1031.28001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2001_9_1_a6/}
}
Mišík, Ladislav. Big set of measure zero. Communications in Mathematics, Tome 9 (2001) no. 1, pp. 53-57. http://geodesic.mathdoc.fr/item/COMIM_2001_9_1_a6/
[B] Besicovitch A. S.: Sets of fractional dimensions IV: On rational approximations to real numbers. J. London Math. Soc 9 (1934), 126 - 131. | DOI
[G] Giitig R.: On Mahler's function $\Theta$. Michigan Math. J. 10 (1963), 161 - 179. | DOI | MR
[J] Jarník V.: Zur metrichen Theorie den diophantischen Approximationen. Recueil Math. Moscow. 36 (1929), 371 - 382.
[M] Mišík L .: How large can a set of measure zero be?. submitted.
[Z-S] Zvára K., Štěpán J.: Pravděpodobnost a matematická statistika. Matfyz- press, Universita Karlova (1987).