Inner product in $l$-groups
Communications in Mathematics, Tome 8 (2000) no. 1, pp. 89-95 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 06F15
@article{COMIM_2000_8_1_a8,
     author = {\v{S}marda, Bohumil},
     title = {Inner product in $l$-groups},
     journal = {Communications in Mathematics},
     pages = {89--95},
     year = {2000},
     volume = {8},
     number = {1},
     mrnumber = {1800225},
     zbl = {1021.06008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2000_8_1_a8/}
}
TY  - JOUR
AU  - Šmarda, Bohumil
TI  - Inner product in $l$-groups
JO  - Communications in Mathematics
PY  - 2000
SP  - 89
EP  - 95
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2000_8_1_a8/
LA  - en
ID  - COMIM_2000_8_1_a8
ER  - 
%0 Journal Article
%A Šmarda, Bohumil
%T Inner product in $l$-groups
%J Communications in Mathematics
%D 2000
%P 89-95
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2000_8_1_a8/
%G en
%F COMIM_2000_8_1_a8
Šmarda, Bohumil. Inner product in $l$-groups. Communications in Mathematics, Tome 8 (2000) no. 1, pp. 89-95. http://geodesic.mathdoc.fr/item/COMIM_2000_8_1_a8/

[1] Birkhoff G.: Lattice theory. Amer. Math. Soc Providence, R.I., 1973. | MR

[2] Puchs L.: Partially ordered algebraic systems. Moscow, Mir, 1965. | MR

[3] Kovář T.: On normal autometrics in commutative lattices ordered groups. Discuss. Math, (to apper).

[4] Swamy K. L. M.: A general theory of autometrized algebras. Math. Ann. 157 (1964), 65-74. | DOI | MR | Zbl