On the Milnor exact sequence for global function fields
Communications in Mathematics, Tome 8 (2000) no. 1, pp. 25-31
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 11E12, 11E81
@article{COMIM_2000_8_1_a2,
     author = {Ciema{\l}a, Marzena},
     title = {On the {Milnor} exact sequence for global function fields},
     journal = {Communications in Mathematics},
     pages = {25--31},
     year = {2000},
     volume = {8},
     number = {1},
     mrnumber = {1800219},
     zbl = {1075.11506},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2000_8_1_a2/}
}
TY  - JOUR
AU  - Ciemała, Marzena
TI  - On the Milnor exact sequence for global function fields
JO  - Communications in Mathematics
PY  - 2000
SP  - 25
EP  - 31
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_2000_8_1_a2/
LA  - en
ID  - COMIM_2000_8_1_a2
ER  - 
%0 Journal Article
%A Ciemała, Marzena
%T On the Milnor exact sequence for global function fields
%J Communications in Mathematics
%D 2000
%P 25-31
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_2000_8_1_a2/
%G en
%F COMIM_2000_8_1_a2
Ciemała, Marzena. On the Milnor exact sequence for global function fields. Communications in Mathematics, Tome 8 (2000) no. 1, pp. 25-31. http://geodesic.mathdoc.fr/item/COMIM_2000_8_1_a2/

[1] M. Ciemała K. Szymiczek: Witt equivaience of globai function fields. Tatra Mount. Math. Publ. (to appear). | MR

[2] H. Hasse: Number Theory. Akademie Verlag, Berlin 1979. | MR | Zbl

[3] T. Y. Lam: The aigebraic theory of quadratic forms. W. A. Benjamin, Reading, Mass. 1973. | MR

[4] J. Milnor D. Husemoller: Symmetric bilinear forms. Springer, Berlin 1973. | MR

[5] K. Szymiczek: On the Milnor exact sequence for rational quadratic forms. In: Number Theory in Progress. Editors K. Győry et al., Proc. Int. Conf. Number Theory, pp. 531-537. Walter de Gruyter, Berlin-New York 1999. | MR | Zbl