@article{COMIM_2000_8_1_a1,
author = {Boche, Holger},
title = {Eine axiomatische {Charakterisierung} der {Hilbert-Transformation}},
journal = {Communications in Mathematics},
pages = {11--23},
year = {2000},
volume = {8},
number = {1},
mrnumber = {1800218},
zbl = {1028.44002},
language = {de},
url = {http://geodesic.mathdoc.fr/item/COMIM_2000_8_1_a1/}
}
Boche, Holger. Eine axiomatische Charakterisierung der Hilbert-Transformation. Communications in Mathematics, Tome 8 (2000) no. 1, pp. 11-23. http://geodesic.mathdoc.fr/item/COMIM_2000_8_1_a1/
[1] P. K. Das: Optical Signal Processing-Fundamentals. Springer-Verlag, Berlin Heidelberg New York, (1991).
[2] H. Boche: Das Verhalten der Hilbert-Transformation und eine Problemstellung von W. Cauer. Proc. ITG a. IEEE CAS, Berlin (1995), S. 1-6.
[3] H. Boche: Charakterisierung des numerischen und analytischen Verhaltens der Hilbert-Transformation. Kleinheubacher Berichte 39, (1996), S. 1-12, Proc. International Union of Radio Science
[4] H. Boche: Untersuchungen zum Verhalten des Hardy-Littlewood Maximaloperators und des Poissonschen Integrals für VMO-Funktionen. accepted in Illinois Journal of Mathematics
[5] H. Boche: Verhalten der Cauchy-Transformation und der Hilbert-Transformation für auf dem Einheitskreis stetige Funktionen. accepted in Archives of Mathematics | Zbl
[6] H. Boche: Untersuchungen zur abgeschnittenen Hilbert-Transformation von BMO-Funktionen und VMO-Funktionen. accepted in Bulletin of The Belgian Mathematical Society Simon Stevin | MR | Zbl
[7] P. Butzer W. Splettstößer R. Stens: The Sampling Theorem and Linear Prediction in Signal Analysis. Jber. Deutsch. Math.-Vereinigung 90, (1988), S. 1-70. | MR
[8] P. Butzer R. Stens: Sampling Theory for not necessarily band-limited Functions. SIAM Review, March 1992, Vol. 34, No. 1. | MR
[9] P. Butzer: A survey of Whittaker-Shannon sampling theorem and some of its extensions. J. Math. Res. Exposition, 3 (1983), p. 185-212. | MR
[10] J. Garcia-Cuerva J. Rubio De Francia: Weighted norm Inequalities and related topics. North-Holland Mathematics Studies, New York, 1986. | MR
[11] J. B. Garnett: Bounded Analytic Functions. Pure and applied Mathematics Bd. 96, Academic Press, New York, 1981. | MR | Zbl
[12] J. W. Goodman: Introduction to Fourier Optics. McGraw-Hill, New York, (1988).
[13] R. J. Marks: Introduction to Shannon Sampling and Interpolation Theory. Springer Texts in Electrical Engineering, Springer Verlag New York, 1991. | MR | Zbl
[14] R. J. Marks ed: Advanced Topics in Shannon Sampling and Interpolation Theory. Springer Texts in Electrical Engineering, Springer Verlag New York, 1993. | MR | Zbl
[15] W. Marten, W. Mathis: Theory of Power in Electrical Systems and Networks and Decomposition of Hilbert Transforms. Proc of the intern. Symp. MTNS' 93, Vol II, Akademie Verlag, Berlin, (1994), p. 781-784. | Zbl
[16] W. Mathis: Analysis of Power in Nonlinear Electrical Circuits. Intern J. on Theoretical Electrotechnics, No. 5, (1994), p. 53-60.
[17] E. M. Stein: Singular Integrals and Differentiability Properties of Functions. Priceton University Press, Princton New Jersey, (1970). | MR | Zbl
[18] A. Zygmund: Trigonometric Series I, II. Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990.