An arithmetic of modular function fields of degree two
Communications in Mathematics, Tome 7 (1999) no. 1, pp. 79-105 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 11F46, 11G18, 14G35, 14K25
@article{COMIM_1999_7_1_a7,
     author = {Sasaki, Ryuji},
     title = {An arithmetic of modular function fields of degree two},
     journal = {Communications in Mathematics},
     pages = {79--105},
     year = {1999},
     volume = {7},
     number = {1},
     mrnumber = {1724136},
     zbl = {1024.11031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_1999_7_1_a7/}
}
TY  - JOUR
AU  - Sasaki, Ryuji
TI  - An arithmetic of modular function fields of degree two
JO  - Communications in Mathematics
PY  - 1999
SP  - 79
EP  - 105
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_1999_7_1_a7/
LA  - en
ID  - COMIM_1999_7_1_a7
ER  - 
%0 Journal Article
%A Sasaki, Ryuji
%T An arithmetic of modular function fields of degree two
%J Communications in Mathematics
%D 1999
%P 79-105
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_1999_7_1_a7/
%G en
%F COMIM_1999_7_1_a7
Sasaki, Ryuji. An arithmetic of modular function fields of degree two. Communications in Mathematics, Tome 7 (1999) no. 1, pp. 79-105. http://geodesic.mathdoc.fr/item/COMIM_1999_7_1_a7/

[1] H. F. Baker: Abelian functions. Cambridge, 1897. | Zbl

[2] O. Bolza: Darstellung der rational ganzen Invarianten der Binarform sechsten Grades durch die Nullwerte der zugehorigen $\theta$-Functionen. Math. Ann., 30:478-495, 1887. | MR

[3] A. Coble: Algebraic geometry and theta functions. Amer. Math. Soc. Coll. Publ. 10, Providence, 1929 (Reprinted 1961). | MR

[4] I. Dolgachev D. Ortland: Point set in projective spaces and theta funcions. Asterisque, 165, 1988. | MR

[5] J. Igusa: On Siegel modular forms of genus two. Amer. J. Math., 84:175-200, 1962; II, ibid. 86:392-412, 1964. | MR

[6] J. Igusa: On the graded rings of theta-constants. Amer. J. Math., 86:219-246, 1964, ILibid. 88:221-236, 1966. | MR

[7] J. Igusa: Modular forms and projective invariants. Amer. J. Math., 89:817-855, 1967. | MR | Zbl

[8] J. Igusa: Theta functions. Springer-Verlag, Berlin-Heiderberg-New York, 1972. | MR | Zbl

[9] S. Koizumi: Theta relations and projective normality of abelian varieties. Amer. J. Math., 98:865-889, 1976. | MR | Zbl

[10] A. Krazer: Thetafunktionen. Chelsea Pub. Co. NewYork, 1970. | Zbl

[11] L. Kronecker: Zur Theorie der elliptischen Functionen XI. Math. Werke IV, Chelsea Pub. Co. New York, 1968.

[12] D. Mumford: On the equations defining abelian varieties I-III. Invent. Math., 1:287-354, 1966; 3:75-135, 3:215-244, 1967. | MR | Zbl

[13] D. Mumford: Abelian varieties. Oxford Univ. Press, 1970. | MR | Zbl

[14] R. Sasaki: Modular forms vanishing at the reducible points of the Siegel upper-half space. J. reine angew. Math., 345:111-121, 1983. | MR | Zbl

[15] R. Sasaki: Some remarks on the moduli space of principally polarized abelian varieties with level (2,4) structure. Comp. Math. 85:87-97, 1993. | MR | Zbl

[16] R. Sasaki: Moduli of curves of genus two and the special orthogonal group of degree three. (preprint, 1996).

[17] G. Shimura: Introduction to the arithmetic theory of automorphic functions. Princeton Univ. Press, 1971. | MR | Zbl

[18] H. Weber: Anwendung der Thetafunctionen zweier Veranderlicher auf die Theorie der Bewegung eines festen Korpers in einer Flüssigkeit. Math. Annalen., 14:173-206, 1879.