@article{COMIM_1999_7_1_a6,
author = {Pomp, Marek and Havelek, Radim},
title = {On representation of cyclotomic fields $\Bbb Q(\zeta_{pq})$},
journal = {Communications in Mathematics},
pages = {71--78},
year = {1999},
volume = {7},
number = {1},
mrnumber = {1724140},
zbl = {1024.11067},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_1999_7_1_a6/}
}
Pomp, Marek; Havelek, Radim. On representation of cyclotomic fields $\Bbb Q(\zeta_{pq})$. Communications in Mathematics, Tome 7 (1999) no. 1, pp. 71-78. http://geodesic.mathdoc.fr/item/COMIM_1999_7_1_a6/
[1] Borevich Z. I, Shafarevich I. R.: Number Theory. Moscow, 1964.
[2] Davis P. J.: Circulant matrices. J. Wiley & Sons, Inc., New York, 1979. | MR | Zbl
[3] Jakubec S., Kostra J., Nemoga K.: On the existence of an integral normal basis generated by a unit in prime extensions of rational numbers. Mathematics of computation 56 (1991), no. 194, 809-815. | DOI | MR | Zbl
[4] Jakubec S., Kostra J.: A note on normal bases of ideals. Math. Slovaca 42 (1992), no. 5, 677-684. | MR | Zbl
[5] Jakubec S., Kostra J.: On the Existence of a Normal Basis for an Ambiguous Ideal. Atti Sem. Mat. Fis. Univ. Modena XLVI (1998), 125-129. | MR | Zbl
[6] Kostra J.: A Note on Representation of Cyclotomic Fields. Acta Math. Inf. Univ. Ostraviensis 4 (1996), 29-35. | MR | Zbl