Remarks to weakly continuous inverse operators and an application in hyperelasticity
Communications in Mathematics, Tome 7 (1999) no. 1, pp. 39-46 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 47H30, 47J05, 74B20, 74G99
@article{COMIM_1999_7_1_a3,
     author = {Kone\v{c}n\'y, Milan},
     title = {Remarks to weakly continuous inverse operators and an application in hyperelasticity},
     journal = {Communications in Mathematics},
     pages = {39--46},
     year = {1999},
     volume = {7},
     number = {1},
     mrnumber = {1724073},
     zbl = {1030.47043},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_1999_7_1_a3/}
}
TY  - JOUR
AU  - Konečný, Milan
TI  - Remarks to weakly continuous inverse operators and an application in hyperelasticity
JO  - Communications in Mathematics
PY  - 1999
SP  - 39
EP  - 46
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_1999_7_1_a3/
LA  - en
ID  - COMIM_1999_7_1_a3
ER  - 
%0 Journal Article
%A Konečný, Milan
%T Remarks to weakly continuous inverse operators and an application in hyperelasticity
%J Communications in Mathematics
%D 1999
%P 39-46
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_1999_7_1_a3/
%G en
%F COMIM_1999_7_1_a3
Konečný, Milan. Remarks to weakly continuous inverse operators and an application in hyperelasticity. Communications in Mathematics, Tome 7 (1999) no. 1, pp. 39-46. http://geodesic.mathdoc.fr/item/COMIM_1999_7_1_a3/

[1] Ciarlet P. G.: Mathematical Elasticity, Vol I: Three Dimensional Elasticity. Studies in Mathematics and its Applications 20, (1988), North Holland, Amsterdam. | MR

[2] Franců J.: Monotone operators. Appl. Math., (1990), Praha.

[3] Franců J.: Weakly continuous operators. Aplication to differential equations. Applications of mathematics, (1994), ČSAV Praha.

[4] Giaquinta M., Modica G., Souček J.: Cartesian Currents in the Calculus of Variations I. Springer, Berlin, (1998). | MR

[5] Giaquinta M., Modica G., Souček J.: Cartesian Currents in the Calculus of Variations II. (1998), Springer, Berlin. | MR

[6] Nečas J.: Introduction to the Theory of Nonlinear Elliptic Equations. TEUBNER-TEXTE zur Mathematik, B. G. Teubner Verlagsgesellschaft, Leipzig, (1983). | MR

[7] Zeidler E.: Nonlinear Functional Analysis and its Applications. (1986), Springer-Verlag, New York (1986). | MR | Zbl

[8] Zeidler E.: Applied Functional analysis - Applications to Mathematical Physics, Springer-Verlag. New York, (1995). | MR

[9] Zeidler E.: Applied Functional analysis - Main Principles and Their Applications. Springer-Verlag, New York, (1995). | MR | Zbl