@article{COMIM_1999_7_1_a3,
author = {Kone\v{c}n\'y, Milan},
title = {Remarks to weakly continuous inverse operators and an application in hyperelasticity},
journal = {Communications in Mathematics},
pages = {39--46},
year = {1999},
volume = {7},
number = {1},
mrnumber = {1724073},
zbl = {1030.47043},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_1999_7_1_a3/}
}
Konečný, Milan. Remarks to weakly continuous inverse operators and an application in hyperelasticity. Communications in Mathematics, Tome 7 (1999) no. 1, pp. 39-46. http://geodesic.mathdoc.fr/item/COMIM_1999_7_1_a3/
[1] Ciarlet P. G.: Mathematical Elasticity, Vol I: Three Dimensional Elasticity. Studies in Mathematics and its Applications 20, (1988), North Holland, Amsterdam. | MR
[2] Franců J.: Monotone operators. Appl. Math., (1990), Praha.
[3] Franců J.: Weakly continuous operators. Aplication to differential equations. Applications of mathematics, (1994), ČSAV Praha.
[4] Giaquinta M., Modica G., Souček J.: Cartesian Currents in the Calculus of Variations I. Springer, Berlin, (1998). | MR
[5] Giaquinta M., Modica G., Souček J.: Cartesian Currents in the Calculus of Variations II. (1998), Springer, Berlin. | MR
[6] Nečas J.: Introduction to the Theory of Nonlinear Elliptic Equations. TEUBNER-TEXTE zur Mathematik, B. G. Teubner Verlagsgesellschaft, Leipzig, (1983). | MR
[7] Zeidler E.: Nonlinear Functional Analysis and its Applications. (1986), Springer-Verlag, New York (1986). | MR | Zbl
[8] Zeidler E.: Applied Functional analysis - Applications to Mathematical Physics, Springer-Verlag. New York, (1995). | MR
[9] Zeidler E.: Applied Functional analysis - Main Principles and Their Applications. Springer-Verlag, New York, (1995). | MR | Zbl