Projective objects in the category of chain complexes
Communications in Mathematics, Tome 7 (1999) no. 1, pp. 33-38 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 18G05, 18G35
@article{COMIM_1999_7_1_a2,
     author = {Kehrein, Achim},
     title = {Projective objects in the category of chain complexes},
     journal = {Communications in Mathematics},
     pages = {33--38},
     year = {1999},
     volume = {7},
     number = {1},
     mrnumber = {1724077},
     zbl = {1022.18008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_1999_7_1_a2/}
}
TY  - JOUR
AU  - Kehrein, Achim
TI  - Projective objects in the category of chain complexes
JO  - Communications in Mathematics
PY  - 1999
SP  - 33
EP  - 38
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_1999_7_1_a2/
LA  - en
ID  - COMIM_1999_7_1_a2
ER  - 
%0 Journal Article
%A Kehrein, Achim
%T Projective objects in the category of chain complexes
%J Communications in Mathematics
%D 1999
%P 33-38
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_1999_7_1_a2/
%G en
%F COMIM_1999_7_1_a2
Kehrein, Achim. Projective objects in the category of chain complexes. Communications in Mathematics, Tome 7 (1999) no. 1, pp. 33-38. http://geodesic.mathdoc.fr/item/COMIM_1999_7_1_a2/

[1] H. Cartan S. Eilenberg: Homological Algebra. Princeton University Press, Princeton, 1956. | MR

[2] A. Dold: Lectures on Algebraic Topology. Springer, Berlin-Heidelberg-New York, 1980. | MR | Zbl

[3] A. Dold: Zur Homotopietheorie der Kettenkomplexe. Math. Annalen 140 (1960), 278-298. | DOI | MR | Zbl

[4] S. Katayama: On Homotopy Classes of Cochain Maps. Proc. Japan Acad. 61 Ser. A (1985), 147-148. | MR | Zbl

[5] S. MacLane: Homology. Springer, Berlin, 1963. | MR | Zbl