Complete solution of a family of simultaneous Pellian equations
Communications in Mathematics, Tome 6 (1998) no. 1, pp. 59-67 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 11D09, 11D25
@article{COMIM_1998_6_1_a8,
     author = {Dujella, Andrej},
     title = {Complete solution of a family of simultaneous {Pellian} equations},
     journal = {Communications in Mathematics},
     pages = {59--67},
     year = {1998},
     volume = {6},
     number = {1},
     mrnumber = {1822516},
     zbl = {1024.11014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a8/}
}
TY  - JOUR
AU  - Dujella, Andrej
TI  - Complete solution of a family of simultaneous Pellian equations
JO  - Communications in Mathematics
PY  - 1998
SP  - 59
EP  - 67
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a8/
LA  - en
ID  - COMIM_1998_6_1_a8
ER  - 
%0 Journal Article
%A Dujella, Andrej
%T Complete solution of a family of simultaneous Pellian equations
%J Communications in Mathematics
%D 1998
%P 59-67
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a8/
%G en
%F COMIM_1998_6_1_a8
Dujella, Andrej. Complete solution of a family of simultaneous Pellian equations. Communications in Mathematics, Tome 6 (1998) no. 1, pp. 59-67. http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a8/

[1] Baker A.: The diophantine equation $y^2 = ax^3 + bx^2 + cx + d$. J. London Math. Soc 43 (1968), 1-9. | DOI | MR | Zbl

[2] Baker A., Davenport H.: The equations $3x^2 - 2 = y^2$ and $8x^2 - 7 = z^2$. Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137. | DOI | MR

[3] Bennett M.A.: On the number of solutions of simultaneous Pell equations. J. Reine Angew. Math., to appear. | MR | Zbl

[4] Brown E.: Sets in which xy + k is always a square. Math. Comp. 45 (1985), 613-620. | MR | Zbl

[5] Cohn J. H. E.: Lucas and Fibonacci numbers and some Diophantine equations. Proc. Glasgow Math. Assoc. 7 (1965), 24-28. | MR | Zbl

[6] Dickson L. E.: History of the Theory of Numbers, Vol. 2. Chelsea, New York, 1966, pp. 518-519.

[7] Diophantus of Alexandria: Arithmetics and the Book of Polygonal Numbers. (I.G. Bashmakova, Ed.), Nauka, Moscow, 1974 (in Russian), pp. 103-104, 232.

[8] Dujella A.: Generalization of a problem of Diophantus. Acta Arith. 65 (1993), 15-27. | MR | Zbl

[9] Dujella A.: The problem of the extension of a parametric family of Diophantine triples. Publ. Math. Debrecen 51 (1997), 311-322. | MR | Zbl

[10] Dujella A.: A proof of the Hoggatt-Bergum conjecture. Proc. Amer. Math. Soc., to appear. | MR | Zbl

[11] Dujella A.: An extension of an old problem of Diophantus and Euler. (preprint). | MR | Zbl

[12] Dujella A., Petho A.: Generalization of a theorem of Baker and Davenport. Quart. J. Math. Oxford Ser. (2), to appear.

[13] Gupta H. K., Singh K.: On k-triad sequences. Internat. J. Math. Math. Sci. 5 (1985), 799-804. | DOI | MR | Zbl

[14] Kedlaya K. S.: Solving constrained Pell equations. Math. Comp., to appear. | MR | Zbl

[15] Mohanty S. P., Ramasamy A. M. S.: The simultaneous Diophantine equations $5y^2 - 20 = x^2$ and $2y^2 + 1 = z^2$. J. Number Theory 18 (1984), 356-359. | DOI | MR

[16] Mohanty S. P., Ramasamy A.M.S.: On $P_{r,k}$ sequences. Fibonacci Quart. 23 (1985), 36-44. | MR

[17] Nagell T.: Introduction to Number Theory. Almqvist, Stockholm, Wiley, New York, 1951. | MR | Zbl

[18] Rickert J. H.: Simultaneous rational approximations and related diophantine equations. Math. Proc. Cambridge Philos. Soc. 113 (1993), 461-472. | DOI | MR | Zbl

[19] SIMATH Manual. Universität des Saarlandes, Saarbrücken, 1993.