On the parity of the class number of the field $\Bbb Q(\sqrt p,\sqrt q,\sqrt r)$
Communications in Mathematics, Tome 6 (1998) no. 1, pp. 41-52 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 11R20, 11R29
@article{COMIM_1998_6_1_a6,
     author = {Bulant, Michal},
     title = {On the parity of the class number of the field $\Bbb Q(\sqrt p,\sqrt q,\sqrt r)$},
     journal = {Communications in Mathematics},
     pages = {41--52},
     year = {1998},
     volume = {6},
     number = {1},
     mrnumber = {1822514},
     zbl = {1024.11071},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a6/}
}
TY  - JOUR
AU  - Bulant, Michal
TI  - On the parity of the class number of the field $\Bbb Q(\sqrt p,\sqrt q,\sqrt r)$
JO  - Communications in Mathematics
PY  - 1998
SP  - 41
EP  - 52
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a6/
LA  - en
ID  - COMIM_1998_6_1_a6
ER  - 
%0 Journal Article
%A Bulant, Michal
%T On the parity of the class number of the field $\Bbb Q(\sqrt p,\sqrt q,\sqrt r)$
%J Communications in Mathematics
%D 1998
%P 41-52
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a6/
%G en
%F COMIM_1998_6_1_a6
Bulant, Michal. On the parity of the class number of the field $\Bbb Q(\sqrt p,\sqrt q,\sqrt r)$. Communications in Mathematics, Tome 6 (1998) no. 1, pp. 41-52. http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a6/

[1] M. Bulant. : On the parity of the class number of the field $\Bbb Q(\sqrt{p}, \sqrt{q}, \sqrt{r})$. J. Number Theory, 68(1):72-86, Jan. 1998. | MR

[2] R. Kučera. : On the parity of the class number of a biquadratic field. J. Number Theory, 52(1):43-52, May 1995. | MR | Zbl

[3] R. Kučera. : On the Stickelberger ideal and circular units of a compositum of quadratic fields. J. Number Theory, 56(1):139-166, Jan. 1996. | MR | Zbl