On the parity of the class number of the field $\Bbb Q(\sqrt p,\sqrt q,\sqrt r)$
Communications in Mathematics, Tome 6 (1998) no. 1, pp. 41-52
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
@article{COMIM_1998_6_1_a6,
author = {Bulant, Michal},
title = {On the parity of the class number of the field $\Bbb Q(\sqrt p,\sqrt q,\sqrt r)$},
journal = {Communications in Mathematics},
pages = {41--52},
year = {1998},
volume = {6},
number = {1},
mrnumber = {1822514},
zbl = {1024.11071},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a6/}
}
Bulant, Michal. On the parity of the class number of the field $\Bbb Q(\sqrt p,\sqrt q,\sqrt r)$. Communications in Mathematics, Tome 6 (1998) no. 1, pp. 41-52. http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a6/
[1] M. Bulant. : On the parity of the class number of the field $\Bbb Q(\sqrt{p}, \sqrt{q}, \sqrt{r})$. J. Number Theory, 68(1):72-86, Jan. 1998. | MR
[2] R. Kučera. : On the parity of the class number of a biquadratic field. J. Number Theory, 52(1):43-52, May 1995. | MR | Zbl
[3] R. Kučera. : On the Stickelberger ideal and circular units of a compositum of quadratic fields. J. Number Theory, 56(1):139-166, Jan. 1996. | MR | Zbl