On the parity of the class numbers of real abelian fields
Communications in Mathematics, Tome 6 (1998) no. 1, pp. 159-166 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 11R18, 11R20, 11R29
@article{COMIM_1998_6_1_a19,
     author = {Mets\"ankyl\"a, Tauno},
     title = {On the parity of the class numbers of real abelian fields},
     journal = {Communications in Mathematics},
     pages = {159--166},
     year = {1998},
     volume = {6},
     number = {1},
     mrnumber = {1822527},
     zbl = {1024.11072},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a19/}
}
TY  - JOUR
AU  - Metsänkylä, Tauno
TI  - On the parity of the class numbers of real abelian fields
JO  - Communications in Mathematics
PY  - 1998
SP  - 159
EP  - 166
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a19/
LA  - en
ID  - COMIM_1998_6_1_a19
ER  - 
%0 Journal Article
%A Metsänkylä, Tauno
%T On the parity of the class numbers of real abelian fields
%J Communications in Mathematics
%D 1998
%P 159-166
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a19/
%G en
%F COMIM_1998_6_1_a19
Metsänkylä, Tauno. On the parity of the class numbers of real abelian fields. Communications in Mathematics, Tome 6 (1998) no. 1, pp. 159-166. http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a19/

[D] D. Davis: Computing the number of totally positive circular units which are squares. J. Number Theory 10 (1978), no. 1, 1-9. | DOI | MR | Zbl

[F] K. Feng: An elementary criterion on parity of class number of cyclic number field. Sci. Sin., Ser. A 25 (1982), no. 10, 1032-1041. | MR | Zbl

[G] D. A. Garbanati: Unit signatures, and even class numbers, and relative class numbers. J. Reine Angew. Math. 274/275 (1975), 376-384. | MR

[H] H. Hasse: Über die Klassenzahl abelscher Zahlkorper. Akademie-Verlag, Berlin, 1952; Nachdruck: Springer-Verlag, Berlin-New York-Tokyo, 1985.

[J] S. Jakubec: On divisibility of class number of real abelian fields of prime conductor. Abh. Math. Sem. Univ. Hamburg 63 (1993), 67-86. | DOI | MR | Zbl

[Ml] T. Metsankyla: An application of the p-adic class number formula. Manuscr. Math. 93 (1997), no. 4, 481-498. | DOI | MR

[M2] T. Metsankyla: Some divisibility results for the cyclotomic class number. Tatra Mt. Math. Publ. 11 (1997), 59-68. | MR

[S] M. A. Shokrollahi: Relative class number of abelian CM-fields of prime conductor below 10000. manuscript.

[Wa] L. C. Washington: Introduction to Cyclotomic Fields. 2nd ed., Springer- Verlag, New York-Berlin- Heidelberg, 1996. | MR