@article{COMIM_1998_6_1_a19,
author = {Mets\"ankyl\"a, Tauno},
title = {On the parity of the class numbers of real abelian fields},
journal = {Communications in Mathematics},
pages = {159--166},
year = {1998},
volume = {6},
number = {1},
mrnumber = {1822527},
zbl = {1024.11072},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a19/}
}
Metsänkylä, Tauno. On the parity of the class numbers of real abelian fields. Communications in Mathematics, Tome 6 (1998) no. 1, pp. 159-166. http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a19/
[D] D. Davis: Computing the number of totally positive circular units which are squares. J. Number Theory 10 (1978), no. 1, 1-9. | DOI | MR | Zbl
[F] K. Feng: An elementary criterion on parity of class number of cyclic number field. Sci. Sin., Ser. A 25 (1982), no. 10, 1032-1041. | MR | Zbl
[G] D. A. Garbanati: Unit signatures, and even class numbers, and relative class numbers. J. Reine Angew. Math. 274/275 (1975), 376-384. | MR
[H] H. Hasse: Über die Klassenzahl abelscher Zahlkorper. Akademie-Verlag, Berlin, 1952; Nachdruck: Springer-Verlag, Berlin-New York-Tokyo, 1985.
[J] S. Jakubec: On divisibility of class number of real abelian fields of prime conductor. Abh. Math. Sem. Univ. Hamburg 63 (1993), 67-86. | DOI | MR | Zbl
[Ml] T. Metsankyla: An application of the p-adic class number formula. Manuscr. Math. 93 (1997), no. 4, 481-498. | DOI | MR
[M2] T. Metsankyla: Some divisibility results for the cyclotomic class number. Tatra Mt. Math. Publ. 11 (1997), 59-68. | MR
[S] M. A. Shokrollahi: Relative class number of abelian CM-fields of prime conductor below 10000. manuscript.
[Wa] L. C. Washington: Introduction to Cyclotomic Fields. 2nd ed., Springer- Verlag, New York-Berlin- Heidelberg, 1996. | MR