@article{COMIM_1998_6_1_a18,
author = {Louboutin, S. and Newman, M. F.},
title = {On the diophantine equation $xy+yz+zx=d$},
journal = {Communications in Mathematics},
pages = {155--158},
year = {1998},
volume = {6},
number = {1},
mrnumber = {1822526},
zbl = {1024.11015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a18/}
}
Louboutin, S.; Newman, M. F. On the diophantine equation $xy+yz+zx=d$. Communications in Mathematics, Tome 6 (1998) no. 1, pp. 155-158. http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a18/
[Cai] T. Cai: On the diophantine equation $xy+yz+zx = m$. Publ. Math. Debrecen 45 (1994), 131-132. | MR | Zbl
[Cox] D. Cox: Primes of the form $x^2 + ny^2$. John Wiley & Sons (1989). | MR
[Hal] N. A. Hall: Binary quadratic discriminants with a single class of forms in each gennus. Math. Zeit. 44 (1938), 85-90. | DOI
[HBP] Al-Zaid Hassan B. Brindza, Á. Pintér: On positive integer solutions of the equation $xy + yz + xz = n$. Canad. Math. Bull. 39 (1996), 199-202. | DOI | MR
[Kov] K. Kovács: About some positive solutions of the diophantine equation $\sum_{1\leq i. Publ Math. Debrecen 40 (1992), 207-210. MR 1181363
[Lou] S. Louboutin: Minorations (sous ľhypothèse de Riemann généralisée) des nombres de classes des corps quadratiques imaginaires. Application, C. R. Acad. Sci. Paris 310 (1990), 795-800. | MR
[Mor] L. J. Mordell: Diophantine equations. Chapter 30, Section 2 : The equation xy + yz + zx = d, Academic Press (1969). | MR | Zbl
[Tat] T. Tatuzawa: On a theorem of Siegel. Japan J. Math. 21 (1951), 163-178. | MR | Zbl