On the diophantine equation $xy+yz+zx=d$
Communications in Mathematics, Tome 6 (1998) no. 1, pp. 155-158 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Classification : 11D09, 11E04, 11R11, 11R29
@article{COMIM_1998_6_1_a18,
     author = {Louboutin, S. and Newman, M. F.},
     title = {On the diophantine equation $xy+yz+zx=d$},
     journal = {Communications in Mathematics},
     pages = {155--158},
     year = {1998},
     volume = {6},
     number = {1},
     mrnumber = {1822526},
     zbl = {1024.11015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a18/}
}
TY  - JOUR
AU  - Louboutin, S.
AU  - Newman, M. F.
TI  - On the diophantine equation $xy+yz+zx=d$
JO  - Communications in Mathematics
PY  - 1998
SP  - 155
EP  - 158
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a18/
LA  - en
ID  - COMIM_1998_6_1_a18
ER  - 
%0 Journal Article
%A Louboutin, S.
%A Newman, M. F.
%T On the diophantine equation $xy+yz+zx=d$
%J Communications in Mathematics
%D 1998
%P 155-158
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a18/
%G en
%F COMIM_1998_6_1_a18
Louboutin, S.; Newman, M. F. On the diophantine equation $xy+yz+zx=d$. Communications in Mathematics, Tome 6 (1998) no. 1, pp. 155-158. http://geodesic.mathdoc.fr/item/COMIM_1998_6_1_a18/

[Cai] T. Cai: On the diophantine equation $xy+yz+zx = m$. Publ. Math. Debrecen 45 (1994), 131-132. | MR | Zbl

[Cox] D. Cox: Primes of the form $x^2 + ny^2$. John Wiley & Sons (1989). | MR

[Hal] N. A. Hall: Binary quadratic discriminants with a single class of forms in each gennus. Math. Zeit. 44 (1938), 85-90. | DOI

[HBP] Al-Zaid Hassan B. Brindza, Á. Pintér: On positive integer solutions of the equation $xy + yz + xz = n$. Canad. Math. Bull. 39 (1996), 199-202. | DOI | MR

[Kov] K. Kovács: About some positive solutions of the diophantine equation $\sum_{1\leq i. Publ Math. Debrecen 40 (1992), 207-210. MR 1181363

[Lou] S. Louboutin: Minorations (sous ľhypothèse de Riemann généralisée) des nombres de classes des corps quadratiques imaginaires. Application, C. R. Acad. Sci. Paris 310 (1990), 795-800. | MR

[Mor] L. J. Mordell: Diophantine equations. Chapter 30, Section 2 : The equation xy + yz + zx = d, Academic Press (1969). | MR | Zbl

[Tat] T. Tatuzawa: On a theorem of Siegel. Japan J. Math. 21 (1951), 163-178. | MR | Zbl